Synthesis and Rotational Isomerism of 1-Substituted Methyl (S)-[5-(2-Nitrophenyl)-1H-pyrazole-4-carbonyl]alaninates

Luka Šenica, ${ }^{\dagger}$ Karmen Stopar, ${ }_{2}^{\dagger}$ Miha Friedrich, ${ }^{\ddagger, \%}$ Uroš Grošelj, ${ }^{\dagger}$ Janez Plavec, ${ }^{\dagger, \hbar, \S}$ Marta Počkaj, ${ }^{\dagger}$ Črtomir Podlipnik, ${ }^{\dagger}$ Bogdan Štefane, ${ }^{\dagger, \hbar}$ and Jurij Svete ${ }^{*}{ }^{\dagger, \hbar}$
${ }^{\dagger}$ Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
${ }^{\ddagger}$ Centre of Excellence EN-FIST, Trg Osvobodilne fronte 13, SI-1000 Ljubljana, Slovenia
${ }^{\S}$ National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia

Supporting Information

Abstract

Seven title compounds 12a-g and the (S)-prolinate analogue 13 were prepared in five steps from 2-nitrobenzoic acid (7). Reduction of the nitro group followed by derivatization of the so formed anilines 14 gave the N-alkyl-(15a-c), N-acyl-(16a,b and 19), and N-vinyl derivative 20. NMR spectra of (S)-alanine and (S)proline derived compounds 12, 13, 14-16, 19, and 20 exhibited two sets of signals corresponding to pairs of conformational diastereomers. The free energy barriers of rotation, $\Delta G^{\ddagger}{ }_{298}=82-86 \mathrm{~kJ}$ mol^{-1}, were determined by ${ }^{1} \mathrm{H}$ NMR for 12a, 12d, 12f, and $\mathbf{1 2 g}$ and evaluated by DFT calculations.

1. INTRODUCTION

Various heterocyclic systems are important scaffolds, which found a widespread use and application as building blocks, reagents, and ligands in synthetic and medicinal chemistry, (organo)catalysis, and material science. ${ }^{1}$

An important new approach to drug discovery involves the application of protein epitope mimetic (PEM) technology. The β-hairpin is an especially interesting naturally occurring scaffold used by many proteins for biomolecular recognition and thus is an attractive tool for mimetic design. Within this context, a variety of bi- and tricyclic systems can be envisaged as hairpin mimetics, such as D-Pro-L-Pro (A), azabicycloalkane amino acids B, 4,6-disubstituted dibenzo $[b, d]$ furans and $9 H$-xanthenes C, and 2-(2'-(aminomethyl)-[1, 1^{\prime}-biphenyl $]-2$-yl)acetic acid (D). The last one is a particularly interesting PEM molecule and secondary structure stabilizing template. Though quite flexible at first glance, it is conformationally constrained due to the restricted rotation around the $\mathrm{C}-\mathrm{C}$ bond connecting the aryl residues (Figure 1). ${ }^{2,3}$

Rotational isomerism describes the phenomenon of rotation about a single bond in a molecule. ${ }^{4}$ Atropisomerism, described first by Christie and Kenner in 1922, ${ }^{5}$ is a type of rotational (conformational) axial chirality-associated isomerism in which the isomers can be isolated. ${ }^{6}$ As defined arbitrarily by $\overline{\text { O}} \mathrm{ki}$, the condition for the existence of atropisomerism is, that one of the isolated isomers has a half-life time of at least 1000 s . Accordingly, the minimum free energy barrier should be 109.6 $\mathrm{kJ} \mathrm{mol}{ }^{-1}$ at $350 \mathrm{~K}^{7}$ From initial 'academic curiosity', axial chirality has recently been recognized as a fundamental basis for

A

C

1

B

D

2

Figure 1. Examples of known PEM templates (hairpin mimetics) AD, ${ }^{2,3}$ potential PEM template $\mathbf{1}$, and its nitro-masked precursor 2.
many reagents and catalysts in asymmetric synthesis ${ }^{8}$ and as a decisive factor in pharmacological properties of bioactive compounds. ${ }^{9}$ Nowadays, the majority of known axially chiral compounds are based on carbocyclic biaryls (e.g. BINAP,

[^0]
Scheme 1

${ }^{a}$ Reaction conditions: (i) BuLi, THF, $-78{ }^{\circ} \mathrm{C}$; (ii) $\mathrm{ClCO}_{2} \mathrm{Me}$ or $\mathrm{CO}_{2},-78 \rightarrow 20^{\circ} \mathrm{C}$; (iii) KCN , NaI, CuI, toluene, reflux; (iv) CDI, THF, r.t., then $\mathrm{MeO}_{2} \mathrm{CCH}_{2} \mathrm{CO}_{2} \mathrm{~K}, \mathrm{MgCl}_{2}, 60^{\circ} \mathrm{C}$; (v) DMFDMA, toluene, reflux; (vi) $\mathrm{RNHNH}_{2} \cdot \mathrm{HCl}(\mathbf{1 0 a}-\mathbf{l})$, n - PrOH or n - BuOH , reflux; (vii) 2 M NaOH , $\mathrm{MeOH}, 35{ }^{\circ} \mathrm{C}$; (viii) CDI, MeCN , r.t., then $(S)-\mathrm{AlaOMe} \cdot \mathrm{HCl}(11 \mathrm{a})$ or $(S)-\mathrm{ProOMe} \cdot \mathrm{HCl}$ (11b), NMM.

QINAP, BINOL, etc.), ${ }^{8}$ whereas the field of hetarene-based analogues is somewhat less explored. ${ }^{10}$

Recently, we published a simple synthesis and some further transformations of 1 -substituted 5-(2-aminophenyl)-1-phenyl$1 H$-pyrazoles. ${ }^{11}$ In extension, we thought that 5 -(2-amino-phenyl)-1-phenyl-1H-pyrazole-4-carboxylic acid (1), available from the nitro-masked precursor 2, might be an interesting axially chiral PEM template (cf. Figure 1). Additional motivation for this research was based on the literature search (SciFinder Scholar), which revealed that the majority of known 1,5-diaryl-1H-pyrazole-4-carboxamides were biologically active. For example, they are potent central nicotinic acetylcholine receptor antagonists ${ }^{12}$ useful in treating small cell lung cancer, ${ }^{13-16}$ they act as $\mathrm{CB} 1^{17}$ and histamine H 3 receptor antagonists, ${ }^{18}$ as cannabinoid receptor modulators, ${ }^{19}$ as inhibitors of NHE-1, ${ }^{20}$ and as fungicides. ${ }^{21}$ Consequently, the above reasons triggered our decision to synthesize some derivatives of $\mathbf{1}$ and 2 to study their rotational isomerism. Herein, we report the synthesis and rotational isomerism of derivatives of $\mathbf{1}$ and $\mathbf{2}$ including experimental determination of rotation barriers by NMR spectroscopy.

2. RESULTS AND DISCUSSION

Starting compounds 3 and 4 were prepared in two steps from 2 -nitroacetophenone following the literature procedure. ${ }^{11}$ Attempted preparation of the key-intermediates $\mathbf{2 a}$ and $\mathbf{5 a}$ via lithiation/carboxylation of 3 and 4 failed, whereas Cu-catalyzed cyanation of 4 gave the cyano compound $\mathbf{6}$ in only 18% yield (Scheme 1, Table 1). Therefore, another synthetic approach was explored. Masamune-Claisen condensation of 2 -nitrobenzoic acid (7), followed by treatment of the β-keto ester 8a with N, N-dimethylformamide dimethylacetal (DMFDMA), and cyclization of the intermediate enaminone 9 a with monosubstituted hydrazines 10a-l in refluxing 1-propanol or 1-

Table 1. Experimental Data for Compounds 2a-h, 5a-l, $12 \mathrm{a}-\mathrm{g}$, and 13

		yield (\%)				
compound	R	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{1 2}$	$\mathbf{1 3}$	
2a, 5a, 10a, 12a, 13	Ph	96	48	72	54	
2b, 5b, 10b, 12b	cyclohexyl	97	98	72	-	
2c, 5c, 10c, 12c	tert-butyl	100	26	71	-	
2d, 5d, 10d, 12d	2-pyridyl	84	40	75	-	
2e, 5e, 10e, 12e	2-chlorophenyl	92	77	87	-	
2f, 5f, 10f, 12f	2,4,6-trichlorophenyl	53	84	69	-	
2g, 5g, 10g, 12g	4-methoxyphenyl	96	82	85	-	
2h, 5h, 10h	2-bromophenyl	45	72	-	-	
5i, 10i	Me	-	58	-	-	
5j, 10j	2,2,2-trifluoroethyl	-	63	-	-	
5k, 10k	CH2CO2Et	-	24	-	-	
5l, 101	6-phenylpyridazin-3-yl	-	85	-	-	

butanol gave the desired pyrazole derivatives $5 \mathbf{5}-1$ in $24-98 \%$ yields over two steps. These were then hydrolyzed with 2 M NaOH in methanol at $35^{\circ} \mathrm{C}$ and the carboxylic acids 2a-h were finally coupled with $\mathrm{L}-\mathrm{AlaOMe}$ (11a) and $\mathrm{L}-\mathrm{ProOMe}$ (11b) to give the corresponding amides $12 \mathrm{a}-\mathrm{g}$ and 13 in 54$87 \%$ yields (Scheme 1, Table 1).

To our great delight (although quite expectedly), the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds 12 and 13 exhibited two sets of signals in a ratio of $\sim 1: 1$. This was in agreement with the proposed formation of a mixture of conformational diastereomers, presumably due to slow rotation around the $\mathrm{C}(5)-$ $C\left(1^{\prime}\right)$ bond (Figure 2). Unfortunately, attempts to separate the conformational diastereomers of $\mathbf{1 2}$ and $\mathbf{1 3}$ by preparative (CC, MPLC) and analytical (TLC, HPLC) chromatographic techniques failed.

Figure 2. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 2 a}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ exhibiting two sets of signals corresponding to the (S, M)-isomer and the (S, P)-isomer.

Scheme 2

${ }^{a}$ Reaction conditions: (i) $\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}, \mathrm{MeOH}$, r.t.; (ii) 2-naphthaldehyde, EtOH , r.t., then $\mathrm{NaBH}_{4}, \mathrm{MeOH}$, r.t.; (iii) H_{2}, $\mathrm{Pd}-\mathrm{C}, \mathrm{MeOH}$, acetone or isobutyraldehyde, r.t.; (iv) $\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}, \mathrm{AcOH}, \mathrm{Ac}_{2} \mathrm{O}$, r.t.; (v) PhCOCl , pyridine, $0^{\circ} \mathrm{C} \rightarrow$ r.t.; (vi) $\mathrm{OCN}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}^{(17}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t.; (vii) tert-butyl (S)-(3-oxopent-4-yn-2-yl)carbamate (18), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \rightarrow$ r.t.

Our inability to separate the conformational diastereomers by chromatography was explainable at best by isomerization around the chiral axis being slow on the NMR chemical shift time scale, yet too fast for preparative separation. We then decided to carry out reduction of the nitro group followed by derivatization of the so formed aniline. We hoped that increased steric hindrance by bulky N -substituents in addition to possible intramolecular hydrogen bonding between the NH and $\mathrm{C}=\mathrm{O}$ groups might slow down rotation around the $\mathrm{C}(5)-$ $C\left(1^{\prime}\right)$ bond. Catalytic hydrogenation of nitro compounds 12ac in the presence of $\mathrm{Pd}-\mathrm{C}$ in methanol furnished the corresponding anilines $\mathbf{1 4 a}-\mathbf{c}$ in $71-87 \%$ yields, whereas reductive alkylation of $\mathbf{1 2 b}$ with acetone and isobutyraldehyde furnished the N-alkylated anilines $\mathbf{1 5 a}$ and $\mathbf{1 5 b}$ in 59% and $\mathbf{6 1 \%}$ yield, respectively (Scheme 2, Table 2). Reductive alkylation of

Table 2. Experimental Data for Compounds 14-16, 19, and 20

compd.	R	R^{\prime}	yield (\%)
$\mathbf{1 4 a}$	Ph	a	72
$\mathbf{1 4 b}$	c - $\mathrm{C}_{6} \mathrm{H}_{11}$	a	87
14c	t-butyl	a	71
15a	a	$i-\mathrm{Pr}$	59
$\mathbf{1 5 b}$	a	$i-\mathrm{Bu}$	61
15c	a	$2-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{CH}_{2}$	36
16a	Ph	Me	75
$\mathbf{1 6 b}$	$c-\mathrm{C}_{6} \mathrm{H}_{11}$	Ph	72
$\mathbf{1 9}$	a	a	72
$\mathbf{2 0}$	a	a	74

${ }^{a}$ Not applicable.
$\mathbf{1 4 b}$ with 2-naphthaldehyde and NaBH_{4} gave $\mathbf{1 5 c}$ in 36% yield. Next, catalytic hydrogenation of $\mathbf{1 2 a}$ in a mixture of acetic acid and acetic anhydride gave the acetylamino derivative 16a in 75% yield, whereas benzoylation of the aniline $\mathbf{1 4 b}$ afforded the

N-benzoyl analogue $\mathbf{1 6 b}$ in 72% yield. Addition of $\mathbf{1 4 b}$ to ethyl isocyanatoacetate (17) and to tert-butyl (S)-(3-oxopent-4-yn-2$\mathrm{yl})$ carbamate $(\mathbf{1 8})^{22}$ led to the corresponding urea-(19) and enaminone derivative 20. NMR spectra of the products 14-16, 19, and 20 exhibited two sets of signals, however, we were again not able to separate the isomers (Scheme 2, Table 2).

Although existence of two conformational diastereomers in solution due to slow rotation of the nonsymmetrical 2 nitrophenyl group seemed obvious, also slow rotation of substituents at positions $\mathrm{N}(1)$ and $\mathrm{C}(4)$, as well as cis/transisomerization of the carboxamido group had to be taken into account. To clarify this issue, some more derivatives with different substitution pattern were synthesized. N-Methyl carboxamides 21a,b and the (S)-1-phenylethyl ester 22 were obtained by coupling of $\mathbf{2 a}$ with the corresponding nucleophiles, while (S)-1-aryl-5-phenyl-1H-pyrazole-4carbonyl)alaninates 25a-c were synthesized from ethyl benzoylacetate ($\mathbf{8 b}$) following standard synthetic protocol (Scheme 3, cf. Scheme 1). NMR spectra of compounds 21a,b, 23a-c, 24a-c devoid of a chiral center and NMR spectra of (S)-alaninates $\mathbf{2 5 a}-\mathrm{c}$ with symmetrical phenyl group at position 5 and a chiral center at the side chain exhibited single sets of signals. Diastereotopicity of nuclei was observed only in NMR spectra of (S)-1-phenylethyl ester 22 with a nonsymmetrical nitrophenyl group at position 5 and a chiral center at the side chain. This indicated, that anisochronicity of nuclei resulted only from the combination of chiral center and chiral axis due to slow rotation of the 5-nitrophenyl group, whereas other aforementioned isomerisations were not relevant in this respect (Scheme 3).
3. Structure Determination. The structures of novel compounds $2 \mathrm{a}-\mathrm{h}, 5 \mathrm{a}-1,12 \mathrm{a}-\mathrm{g}, 13$, 14a-c, 15a-c, 16a,b, 19, 20, 21a,b, 22, 23b,c, 24b,c, and 25a-c were determined by spectroscopic methods (IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, and MS) and by elemental analyses for C, H, and N . Compounds $2 \mathrm{c}, 2 \mathrm{~d}, 2 \mathrm{~g}, 5 \mathrm{~h}$, $5 k, 13,14 c, 15 b, 16 b, 19,20,22,23 b, c$, and $24 b, c$ were not

Scheme 3

[^1]

Compounds 12, 13, 14-16, 19, $20\left(X=\mathrm{NH}, \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}\right)$ Compound 22 ($\mathrm{X}=\mathrm{O}, \mathrm{R}=\mathrm{Ph}$)

Single set of signals in NMR spectra:

- devoid of chiral center
or
- a symmetrical aryl group at C(5)

Compounds 2a-h ($\mathrm{R}=\mathrm{NO}_{2}, \mathrm{X}=\mathrm{OH}$)
Compounds 5a-I ($\mathrm{R}=\mathrm{NO}_{2}, \mathrm{X}=\mathrm{OMe}$)
Compounds 21a,b $\left(R=N O_{2}, X=N R^{1} R^{2}\right)$
Compounds 25a-c ($\mathrm{R}=\mathrm{H}, \mathrm{X}=(\mathrm{S})$-AlaOMe)

Figure 3. Conformational isomerism and torsion angles $\Phi 1-\Phi 4$ in compounds 5, 12, 14-16, 19-22, and 25.
(

Figure 4. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2 f}\left(\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}\right)$ at $298-383 \mathrm{~K}$ showing the singlets for the OMe group. The coalescence temperature $\left(T_{c}\right)$ is around 365 K .
obtained in analytically pure form. Their identities were confirmed by ${ }^{13} \mathrm{C}$ NMR and/or EI-HRMS.

The structures of compounds $\mathbf{4}, \mathbf{6}, \mathbf{5 e}, \mathbf{5 f}$, and $\mathbf{2 5 b}$ were determined by X-ray diffraction, which unambiguously confirmed axial chirality of these compounds. ${ }^{23}$ Unfortunately, the crystal structures were not compliant with structural
requirements for β-turn minetics. ${ }^{2 f, g}$ Crystal structures of compounds $\mathbf{4}, \mathbf{6}, \mathbf{5 e}, \mathbf{5 f}$, and $\mathbf{2 5 b}$ are depicted in the Supporting Information.

Rotational isomerism of compounds $5,12,13,14-16$, and $19-25$ in solution was studied by NMR. In CDCl_{3} and DMSOd_{6} solution, all pyrazole derivatives 5, 12, 13, 14-16, and 19-

Table 3. Selected Thermodynamic Parameters for Compounds 12a, 12d, 12f, and 12g Determined by ${ }^{1} \mathrm{H}$ NMR in DMSO- d_{6} Using CTM and CLA Approach

entry	parameter	compound			
		12a	12d	12 f	12g
1	$\Delta \nu_{0}\left(\mathrm{~s}^{-1}\right)^{a}$	11.8	3.1	10.5	12.0
2	$k_{c}\left(\mathrm{~s}^{-1}\right)$	26.1	6.91	23.3	26.6
3	$T_{\mathrm{c}}(\mathrm{K})^{b}$	423	375	365	431
4	$\Delta G^{\ddagger}{ }_{c}(\mathrm{~kJ} / \mathrm{mol})^{c}$	93.3	95.1	80.2	94.8
5	$\Delta G^{\ddagger}{ }_{c}(\mathrm{~kJ} / \mathrm{mol})^{d}$	93.4	91.1	80.3	95.0
6	$E_{\mathrm{a}}(\mathrm{kJ} / \mathrm{mol})^{b}$	70.8	51.1	96.0	62.8
7	$\Delta H^{\ddagger}(\mathrm{kJ} / \mathrm{mol})^{e}$	67.8	48.2	93.0	59.8
8	$\Delta S^{\ddagger}(\mathrm{J} / \mathrm{mol} \mathrm{K})^{e}$	-0.88	-1.65	0.50	-1.18
9	$\Delta G^{\ddagger}{ }_{298}(\mathrm{~kJ} / \mathrm{mol})^{b}$	85.9	82.3	82.7	84.2
10	$k_{298}\left(\mathrm{~s}^{-1}\right)^{\text {b }}$	5.5×10^{-3}	2.31×10^{-2}	1.97×10^{-2}	1.08×10^{-2}

${ }^{a} \Delta \nu_{0}$ is chemical shift difference for OMe of each diastereomer in DMSO- d_{6} at 298 K . ${ }^{b}$ Obtained from k_{c} and plot of ln k against $1000 / \mathrm{T}$. ${ }^{c}$ From $\Delta G^{\ddagger}{ }_{c}=19.1 \times 10^{-3} \cdot T_{c} \cdot\left(9.97+\log T_{c}-\log \left|\Delta \nu_{0}\right|\right) .{ }^{d}$ From $\Delta G^{\ddagger}{ }_{T}=\mathrm{RT} \cdot(23.76+\ln T-\ln k) .{ }^{e}$ Obtained from plot of $\ln (k / T)$ against $1000 / T$.
weaker $\pi \rightarrow \pi^{*}$ interaction

Compound 12d ($\mathrm{R}=\mathrm{H}, \mathrm{X}=\mathrm{N}$)
Compound $12 \mathrm{f}(\mathrm{R}=\mathrm{Cl}, \mathrm{X}=\mathrm{C}-\mathrm{Cl})$
stronger $\pi \rightarrow \pi^{*}$ interaction

Compound 12a ($\mathrm{R}=\mathrm{H}$)
Compound 12g ($\mathrm{R}=\mathrm{OMe}$)

Figure 5. Comparison of $\pi \rightarrow \pi^{*}$ interactions in compounds $\mathbf{1 2 d}, \mathbf{1 2 f}$ and $\mathbf{1 2 a}, \mathbf{1 2 g}$.

25 with at least one nonsymmetrical substituent exist as interconverting mixtures of conformational isomers, due to rotation around the following single bonds (Figure 3): $\mathrm{N}(1)-$ $\mathrm{C}\left(1^{\prime \prime}\right)$ bond (torsion angle $\left.\Phi 1\right), \mathrm{C}(5)-\mathrm{C}\left(1^{\prime}\right)$ bond (torsion angle $\Phi 2$), $\mathrm{C}(4)-\mathrm{C}\left(4^{\prime}\right)$ bond (torsion angle $\Phi 3$), and the amide or ester bond (torsion angle $\Phi 4$). Single sets of signals in the NMR spectra of compounds $2,5,21,23$, and 24 devoid of a stereogenic center are in agreement with conformational enantiomers and isochronous enantiotopic nuclei (Figure 3, right). Accordingly, introduction of a chiral center at the side chain in compounds $12,13,14-16,19,20,22$, and 25 should induce diastereotopicity to nuclei. However, anisochronicity of diastereotopic nuclei was observed only for compounds 12, 13, 14-16, 19, 20, and 22 with a nonsymmetrical 2-nitropenyl group at position 5 (Figure 3, left), whereas in compounds $\mathbf{2 5 a} \mathbf{- c}$ with a symmetrical phenyl group at position 5 the nuclei remained isochronous (Figure 3, right). In the presence of a chiral center in compounds $\mathbf{2 5 a} \mathbf{- c}$, isochrony of nuclei is explainable by fast rotation around $\Phi 1, \Phi 3$, and $\Phi 4$. This clearly leads to the conclusion that diastereotopicity of nuclei in compounds 12, 13, 14-16, 19, 20, and 22 is induced by a combination of a chiral center at the side chain and chiral axis formed by slow rotation around $\Phi 2$. On the other hand, rotation around the other bonds is faster and, hence, does not induce diastereotopicity (Figure 3).
4. Experimental Determination of Rotational Barrier through ${ }^{1} \mathrm{H}$ NMR Data. The ${ }^{1} \mathrm{H}$ NMR spectra of compounds 12a, 12d, 12f, and 12 g were measured in DMSO- d_{6} at different temperatures ranging from 298 to 393 K . The singlet for OMe
group was chosen as the reference signal. The coalescence of signals was not reached for $\mathbf{1 2 a}$ and $\mathbf{1 2 g}$, while the signals for $\mathbf{1 2 d}$ and $\mathbf{1 2 f}$ coalesced at $\sim 375 \mathrm{~K}$ and $\sim 365 \mathrm{~K}$, respectively. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 12 f in region $3.45-3.75 \mathrm{ppm}$ is depicted in Figure $4 .^{23}$

On the basis of the above temperature dependent ${ }^{1} \mathrm{H}$ NMR data, the experimental free energy of activation for rotation at the temperature of coalescence, ΔG_{c}^{\ddagger}, was determined for compounds 12a, 12d, 12f, and 12 g using coalescence temperature method (CTM). ${ }^{24-27}$ The rates of rotation at T_{c} were determined using the equation for symmetrical exchange, $k_{c}=\pi \cdot \Delta \nu_{0} / 2^{1 / 2}$, whereas the $\Delta G^{\ddagger}{ }_{c}$ values were determined from the modified Eyring equation. ${ }^{25}$ The results are summarized in Table 3 (Entries 1-4). ${ }^{23}$ Next, thermodynamic parameters for the above compounds were determined by the complete line shape analysis method (CLA). ${ }^{24,25,27}$ The rates of isomerization were determined from the modified Eyring equations for the intermediate and fast exchange. ${ }^{28}$ The coalescence temperature $\left(T_{c}\right)$, free energy of activation for rotation, ΔG_{c}^{\ddagger}, and activation energy for rotation (isomerization), E_{a}, were determined from Arrhenius plot of $\ln k$ against $1000 / T .{ }^{29}$ Since the relative proportion of the two rotamers was close to $1: 1$, the $\Delta G^{\ddagger}{ }_{c}$ was determined from the modified Eyring equation for equally populated rotamers. ${ }^{30,31}$ The ΔH^{\ddagger} and the ΔS^{\ddagger}, were determined from Arrhenius plot of $\ln (k / T)$ against $1000 / T$. The results are summarized in Table 3 (Entries 5-10). ${ }^{23}$ The experimental free energy barriers of rotation at 298 K for compounds 12a, 12d, 12f, and 12g, $\Delta G^{\ddagger}{ }_{298}=$ $82.3-85.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (Table 3, Entry 9), were below the arbitrary limit, $\Delta G^{\ddagger}{ }_{300}>93.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$, defined by $\overline{\text { Öki. }}{ }^{7}$
${ }^{1} \mathrm{H}$ NMR data and thermodynamic parameters obtained by CLA approach (cf. Table 3) reveal, that compounds $\mathbf{1 2 d}$ and 12 f exhibit slightly lower free energy of activation for rotation, $\Delta G^{\ddagger}{ }_{298}=82.3$ and $82.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $298 \mathrm{~K}_{\text {which }}$ is reflected in lower coalescence

Figure 6. GS1-global minimum (left) and GS2-local minimum (right) conformations of 12a.
temperature, $T_{c}=375$ and 365 K (cf. Table 3). Accordingly, isomerization of 12 d and $12 \mathrm{f}\left(k_{298} \sim 0.02 \mathrm{~s}^{-1}\right)$ is faster than isomerization of $\mathbf{1 2 a}$ and $12 \mathrm{~g}\left(k_{298} \leq 0.01 \mathrm{~s}^{-1}\right)$. This difference is explainable by the $\pi \rightarrow \pi^{*}$ interactions between the aromatic rings. Higher energy barrier of rotation in compounds $\mathbf{1 2 a}$ and $\mathbf{1 2 g}$ is in agreement with stronger $\pi \rightarrow \pi^{*}$ interactions between electron-poor 2-nitrophenyl group and electron-rich N -aryl groups. On the other hand, such $\pi \rightarrow \pi^{*}$ interactions are weaker in compounds $\mathbf{1 2 d}$ and $\mathbf{1 2 f}$ bearing electron-poor N -aryl groups (Figure 5).
5. Computational Determination of Rotational Barrier and Modes of Rotation. Finally, the observations on the conformational equilibrium were corroborated by quantum mechanical calculations at the B3LYP/6-311G and B3LYP/6-311+G(d,p) level of theory in the gas phase by means of the Gaussian 09 software. ${ }^{32}$ The stationary points at the potential energy surface (PES) were determined and the structure was characterized as minima or transition state based on the number of imaginary frequencies (0 or 1). Pyrazole ring represented the rigid part, while the aryl substituents and the amide moiety exhibited conformational freedom. Torsion angles $\Phi 1, \Phi 2, \Phi 3$, and $\Phi 4$ used to follow energetic changes induced by rotations are defined on Figure 3. PES, obtained at the B3LYP/6-311G level of theory, revealed the (P, S)-conformer as the GS1-global minimum with the lowest energy and the (M, S)-conformer as the GS2-local minimum, optimized with the B3LYP $/ 6-311+G(d, p)$ level of theory, which is marginally $(0.33 \mathrm{~kJ} / \mathrm{mol})$ higher in energy in the gas phase. This result is in excellent agreement with the experimental value, $\Delta G_{298}=0.30 \mathrm{~kJ} /$ mol, determined by ${ }^{1} \mathrm{H}$ NMR from the 53:47 ratio of conformational diastereomers of $\mathbf{1 2 a}$ in CDCl_{3} at 298 K . The PES scan also revealed four possible transition state conformations. TS1 and TS2 correspond to the conversion of [GS1] $\leftrightarrow[\mathrm{TS} 1] \leftrightarrow[\mathrm{GS} 2] \leftrightarrow[\mathrm{TS} 2] \leftrightarrow[\mathrm{GS} 1]$ via rotation around $\Phi 1$ and $\Phi 2$. They are of the same geometry and energy ΔE is located $97.1 \mathrm{~kJ} / \mathrm{mol}$ above the GS1. TS3 and TS4 were found during simultaneous rotation of the nitrophenyl substituent $(\Phi 2)$ and the amide side chain $(\Phi 3)$. The respective energies (ΔE) of TS3 and TS4, 109.3 , and $91.9 \mathrm{~kJ} / \mathrm{mol}$, indicated that TS4 was $17.4 \mathrm{~kJ} /$ mol more stable than TS3. Finally, TS5 and TS6 were identified upon 360° scan of the amide bond dihedral ($\Phi 4$) in the GS1-global minimum conformation. The sum of three bond angles around the amide nitrogen (an index of sp^{3} character) ${ }^{33}$ in TS5 and TS6 was 339.7° and 334.6°, respectively. This indicated strong sp ${ }^{3}$ character on the amide nitrogen in allocated transition states TS5 and TS6. The evaluated amide bond rotational barrier for the compound 12a ($\Delta E=$ $75.6 \mathrm{~kJ} / \mathrm{mol}$) was in the range of expectancy according to the literature data. ${ }^{34}$ The fully optimized ground-state structures (GS1 and GS2) of 12a at B3LYP/6-311+G(d,p) level are shown in Figure 6. Total and relative energies for 12a obtained by DFT calculations are given in Table 4. The PES scans (obtained at the B3LYP/6-311G level of theory) and geometries of transition states TS1-TS6 (optimized at the B3LYP/6-311+G(d,p) level of theory) are given in the Supporting Information.

Thus, evaluation of the conformational freedom in derivative 12a by DFT method demonstrated that the rotational barrier of nitrophenyl

Table 4. Total Energies and Relative Energies Obtained by DFT Calculation for Compound 12a

	B3LYP/6-311+G(d,p)		
	$E_{\text {ZPE }}(\text { a.u. })^{a}$	$\Delta E(\mathrm{~kJ} / \mathrm{mol})$	$\Delta G(\mathrm{~kJ} / \mathrm{mol})$
GS1-global minimum	-1368.02465	0	
GS2-local minimum	-1368.02453	0.33^{b}	0.32^{b}
TS1	-1367.98766	97.1	104.2
TS2	-1367.98766	97.1	104.2
TS3	-1367.98303	109.3	119.1
TS4	-1367.98966	91.9	102.4
TS5	-1367.99265	84.0	86.5
TS6	-1367.99629	74.5	75.6

 $(\mathrm{d}, \mathrm{p}) .{ }^{b} \mathrm{~A} 53: 47$ ratio of conformational diastereomers of $\mathbf{1 2 a}$ in CDCl_{3} at 298 K corresponds to energy difference, $\Delta G_{298}=0.30 \mathrm{~kJ} / \mathrm{mol}$.
ring is for $\Delta E=17.4 \mathrm{~kJ} / \mathrm{mol}$ higher in energy than that of the resonance stabilized amide bond. The obtained data support conformational change form [GS1] to [GS2] via TS4 with $\Delta G_{298}=$ $102.4 \mathrm{~kJ} / \mathrm{mol}$ rotational barrier that is in fair agreement with the experimental value.

6. CONCLUSION

In summary, methyl (1-substituted-5-(2-nitrophenyl)-1H-pyr-azole-4-carbonyl)-L-alaninates $\mathbf{1 2 a}-\mathbf{g}$ and their 5 -(2-aminophenyl) analogues $14-16,19$, and 20 were prepared as potential PEM templates in 4-6 steps from 2-nitrobenzoic acid (7). NMR spectra of compounds $12,13,14-16,19$, and 20 exhibit two sets of signals, which are due to slow rotation of 2 nitrophenyl group. The axial chirality of these compounds was additionally confirmed by their crystal structures. The experimental free energy of rotation at T_{c} and at 350 K was determined by ${ }^{1} \mathrm{H}$ NMR for compounds $12 \mathrm{a}, 12 \mathrm{~d}, 12 \mathrm{f}$, and $\mathbf{1 2 g}$. Our inability to separate the isomers is explainable by the experimental value for free energy of rotation, $\Delta G^{\ddagger}{ }_{298}=82-86$ $\mathrm{kJ} \mathrm{mol}^{-1}$, which is below the arbitrary limit, $\Delta G^{\ddagger}{ }_{300}>93.5 \mathrm{~kJ}$ mol^{-1}, defined by O$\overline{\mathrm{Ki}}{ }^{7}$ Evaluation of the conformational freedom in derivative 12 a by DFT method was in agreement with the experimental data indicating that rotational barrier of nitrophenyl ring was higher in energy than that of resonance stabilized amide bond. The experimental and computational results also suggest that rotation of the nitrophenyl group (atropisomerization) occurs in a molecular gear-type process through simultaneous rotation of the 1-aryl, 5-(2-nitrophenyl), and 4-carboxamido group. In terms of PEM, title compounds are too rigid to be good mimics; however, increased flexibility
induced by replacement of the amino and carboxy groups with aminomethyl and carboxymethyl groups could make the template 1 a better β-turn mimic.

7. EXPERIMENTAL SECTION

7.1. General Methods. Melting points were determined on a Kofler micro hot stage and on an automated melting point system. The NMR spectra were recorded in CDCl_{3} and DMSO- d_{6} using TMS as the internal standard on a 300 or 500 MHz instrument at 300 and 500 MHz for ${ }^{1} \mathrm{H}$ and at 75.5 and 126 MHz for ${ }^{13} \mathrm{C}$ nucleus, respectively. Optical rotations were measured on polarimeter using 1 mL cell with a 10 cm path lenghth. Mass spectra were recorded on TOF LC/MS spectrometer and IR spectra on a FTIR ATR spectrophotometer. Microanalyses were performed by combustion analysis on a CHN analyzer. Catalytic hydrogenations were carried out on a hydrogenation apparatus (500 mL), always at room temperature under 4 bar of H_{2}. Column chromatography (CC), flash column chromatography (FC), and dry-vacuum flash chromatography (DVFC) were performed on silica gel (particle size $35-70 \mu \mathrm{~m}$). 2Nitrobenzoic acid (7), CDI, potassium monomethyl malonate, DMFDMA, hydrazine derivatives $10 \mathrm{a}-\mathrm{l},(S)-\alpha$-amino acid esters hydrochlorides 11a,b, isobutyraldehyde, IBCF, and ethyl isocyanatoacetate (17) are commercially available. 4-Bromo-5-(2-nitrophenyl)-1-phenyl-1 H -pyrazole (4) ${ }^{11}$ and tert-butyl (S)-(3-oxopent-4-yn-2-yl)carbamate $(\mathbf{1 8})^{22}$ were prepared according to the literature procedures.

The temperature dependent NMR data were acquired on 300 MHz NMR spectrometer equipped with $5 \mathrm{~mm} 1 H / 19 \mathrm{~F} / \mathrm{X}$ PFG ATB Broadband Probe at 298 K. ${ }^{1} \mathrm{H}$ spectra were obtained with a 5000 Hz sweep width, 3.7 s acquisition time, $9.0 \mu \mathrm{~s}\left(90^{\circ}\right)$ pulse width, 15 s delay time and 16 scans. Chemical shifts were referenced to the residual solvent signal of DMSO- d_{6} at $\delta_{\mathrm{H}} 2.50 \mathrm{ppm}$. Temperaturedependent measurements were carried out between 313 and 393 K with steps of 10 K .
7.2. 5-(2-Nitrophenyl)-1-phenyl-1H-pyrazole-4-carbonitrile (6). A 10 mL Schlenk flask was charged with 4-bromo-5-(2-nitrophenyl)-1-phenyl-1 H -pyrazole $(4)^{11}(1.72 \mathrm{~g}, 5 \mathrm{mmol})$, NaI $(150 \mathrm{mg}, 1 \mathrm{mmol})$, CuI ($95 \mathrm{mg}, 0.5 \mathrm{mmol}$), and KCN ($390 \mathrm{mg}, 6$ mmol), the flask was evacuated, and filled with argon. Anhydrous toluene (5 mL) and N, N-dimethylethylenediamine ($0.54 \mathrm{~mL}, 5 \mathrm{mmol}$) were added, the mixture was refluxed under argon for 24 h , and cooled to room temperature. Aqueous ammonia $(25 \%, 10 \mathrm{~mL})$ was added and the product was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic phases were dried over anh. sodium sulfate, filtered, and the filtrate was evaporated in vacuo. The residue was purified by DVFC (silica gel, EtOAc-hexanes, 1:1). Fractions containing the product were combined and evaporated in vacuo. The residue was further purified by MPLC (silica gel, EtOAc-hexanes, 1:2). Fractions containing the product were combined and evaporated in vacuo to give 6. Yield: $255 \mathrm{mg}(18 \%)$ of yellowish crystals; $\mathrm{mp} 131-134{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18(2 \mathrm{H}, \mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}) ; 7.28-7.34$ $(3 \mathrm{H}, \mathrm{m}) ; 7.58(1 \mathrm{H}, \mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}) ; 7.69(1 \mathrm{H}, \mathrm{td}, J=8.2,1.4 \mathrm{~Hz})$; $7.79(1 \mathrm{H}, \mathrm{td}, J=7.6,1.1 \mathrm{~Hz}) ; 8.08(1 \mathrm{H}, \mathrm{s}) ; 8.11(1 \mathrm{H}, \mathrm{dd}, J=8.2,1.2$ $\mathrm{Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 94.7,112.8,122.4,124.3,124.6$, 125.6, 129.1, 129.4, 131.7, 132.6, 134.1, 137.9, 142.6, 143.9. m/z (ESI) $=291\left(\mathrm{MH}^{+}\right) . m / z$ (HRMS) Found: $291.0876\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires: $m / z=291.0877$. (Found: C 65.82, H 3.28, N 18.87. $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot 1 / 8 \mathrm{H}_{2} \mathrm{O}$ requires: C 65.69, H 3.53, N 19.15.); $\nu_{\text {max }}$ (ATR) 3130, 2232 (CN), 1524, 1496, 1347, $759,691 \mathrm{~cm}^{-1}$.
7.3. Synthesis of Methyl 3-(2-nitrophenyl)-3-oxopropanoate (8a). CDI $(1.79 \mathrm{~g}, 11 \mathrm{mmol})$ was added to a solution of 2 -nitrobenzoic acid (7) $(1.68 \mathrm{~g}, 10 \mathrm{mmol})$ in acetonitrile $(25 \mathrm{~mL})$ and the mixture was stirred at r.t. for 1 h . Then, a solid well homogenized mixture of powdered anh. $\mathrm{MgCl}_{2}(0.95 \mathrm{~g}, 10 \mathrm{mmol})$ and potassium monomethyl malonate ($2.34 \mathrm{~g}, 15 \mathrm{mmol}$) was added, and the mixture was stirred at $70^{\circ} \mathrm{C}$ for 90 h . Volatile components were evaporated in vacuo, the residue was taken up in EtOAc (50 mL), and the so formed suspension washed with $1 \mathrm{M} \mathrm{NaHSO}(3 \times 50 \mathrm{~mL})$, saturated aq. $\mathrm{NaHCO}_{3}(3 \times 50 \mathrm{~mL})$, and brine $(70 \mathrm{~mL})$. The organic phase was
dried for 20 min over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the filtrate was evaporated in vacuo to give 8a. Yield: $1.58 \mathrm{~g}(70 \%)$ of yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.73(3 \mathrm{H}, \mathrm{s}) ; 3.90(2 \mathrm{H}, \mathrm{s}) ; 7.53(1 \mathrm{H}, \mathrm{dd}, J$ $=7.5,1.3 \mathrm{~Hz}) ; 7.65(1 \mathrm{H}$, ddd, $J=8.1,7.5,1.2 \mathrm{~Hz}) ; 7.78(1 \mathrm{H}, \mathrm{td}, J=$ $7.5,1.3 \mathrm{~Hz}) ; 8.18(1 \mathrm{H}, \mathrm{dd}, J=8.1,1.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $\delta 48.7,52.5,124.3,128.1,131.0,134.6,136.7,145.3,167.1$, 194.6. $m / z(E S I)=224\left(\mathrm{MH}^{+}\right) . m / z$ (HRMS) Found: 224.0556 $\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{5}$ requires: $m / z=224.0565 . \nu_{\text {max }}$ (ATR) 2955, 1740 ($\mathrm{C}=\mathrm{O}$) , 1526, 1437, 1345, 1203, 987, $699 \mathrm{~cm}^{-1}$.
7.4. General Procedure for the Synthesis of 1-Substituted Methyl 5-(2-nitrophenyl)-1H-pyrazole-4-carboxylates 5a-I. A mixture of $8 \mathrm{a}(0.67 \mathrm{~g}, 3 \mathrm{mmol})$, anh. toluene (10 mL), and DMFDMA $(0.5 \mathrm{~mL}, 3.3 \mathrm{mmol})$ was stirred under reflux for 4 h and volatile components were evaporated in vacuo to give the crude enaminone 9 as a brown oily residue. The residue was dissolved in 1-propanol (10 mL) or 1-butanol (10 mL), hydrazine derivative 10a-1 (3.6 mmol) and 37% hydrochloric acid (6 drops) were added, and the mixture was stirred under reflux for 3-32 h. Volatile components were evaporated in vacuo and the residue was purified by FC (EtOAc/hexanes). Fractions containing the product were combined and evaporated in vacuo to give the crude products $\mathbf{5 a - l}$. The solid products $\mathbf{5 a - f}, \mathbf{i}, \mathrm{j}, \mathbf{l}$ were suspended in $\mathrm{Et}_{2} \mathrm{O}$ or $i-\mathrm{Pr}_{2} \mathrm{O}(15 \mathrm{~mL})$, the suspensions were stirred at r.t. for 1 h , and the precipitates were collected by filtration and washed with $\mathrm{Et}_{2} \mathrm{O}$ or $i-\mathrm{Pr}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ to give the purified compounds $\mathbf{5 a}-\mathbf{f}, \mathbf{i}, \mathbf{j}, \mathbf{l}$. The oily products $\mathbf{5 g}, \mathbf{h}, \mathbf{k}$ were purified by CC ($\mathrm{EtOAc} /$ hexanes). Fractions containing the product were combined and evaporated in vacuo to give the crude products $5 \mathbf{g}, \mathbf{h}, \mathbf{k}$.
7.4.1. Methyl 5-(2-nitrophenyl)-1-phenyl-1H-pyrazole-4-carboxylate (5a). Prepared from 8a ($1.08 \mathrm{~g}, 4.8 \mathrm{mmol}$), DMFDMA (0.75 $\mathrm{mL}, 5 \mathrm{mmol}$), and phenylhydrazine hydrochloride 10a ($0.84 \mathrm{~g}, 5.8$ mmol) in 1-propanol, reflux for $4 \mathrm{~h}, \mathrm{FC}$ (EtOAc/hexanes, 1:2), trituration with $\mathrm{Et}_{2} \mathrm{O}$. Yield: $744 \mathrm{mg}(48 \%)$ of white crystals; mp 124$126{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.69(3 \mathrm{H}, \mathrm{s}), 7.18-7.22(1 \mathrm{H}$, m), $7.26-7.33(5 H, m), 7.53-7.60(2 H, ~ m), 8.11-8.16(1 H, ~ m), 8.18$ $(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 51.4,113.5,124.6,125.0$, 128.5, 129.1, 130.5, 132.6, 133.0, 138.6, 141.6, 142.2, 142.2, 149.1, 162.9. $\mathrm{m} / \mathrm{z}(\mathrm{ESI})=324\left(\mathrm{MH}^{+}\right) . \mathrm{m} / \mathrm{z}$ (HRMS) Found: 324.0984 $\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: $m / z=324.0984$. (Found: C, 63.07; H, 3.84; $\mathrm{N}, 13.04 . \mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: C, 63.16; $\mathrm{H}, 4.05$; $\mathrm{N}, 13.00$.); $\nu_{\text {max }}(\mathrm{ATR}) 3123,2953,1712$ (C=O), 1528, 1503, 1351, 1239, 773 cm^{-1}.
7.4.2. Methyl 1-cyclohexyl-5-(2-nitrophenyl)-1H-pyrazole-4-carboxylate (5 b). Prepared from $8 \mathrm{a}(1.58 \mathrm{~g}, 7.1 \mathrm{mmol}$), DMFDMA (1.2 $\mathrm{mL}, 8 \mathrm{mmol})$, and cyclohexylhydrazine hydrochloride $\mathbf{1 0 b}(1.20 \mathrm{~g}, 8$ $\mathrm{mmol})$ in 1-propanol, reflux for $14 \mathrm{~h}, \mathrm{FC}(\mathrm{EtOAc})$, trituration with $\mathrm{Et}_{2} \mathrm{O}$. Yield: $1.43 \mathrm{~g}(63 \%)$ of yellowish crystals; mp $167-169^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.10-1.30(3 \mathrm{H}, \mathrm{m}) ; 1.64(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=$ $12.4 \mathrm{~Hz}) ; 1.79-2.09(6 \mathrm{H}, \mathrm{m}) ; 3.62(3 \mathrm{H}, \mathrm{s}) ; 3.70(1 \mathrm{H}, \mathrm{tt}, J=11.5,4.1$ $\mathrm{Hz}) ; 7.34(1 \mathrm{H}, \mathrm{dd}, J=7.5,1.6 \mathrm{~Hz}) ; 7.70(1 \mathrm{H}, \mathrm{td}, J=7.8,1.6 \mathrm{~Hz}) ; 7.76$ $(1 \mathrm{H}, \mathrm{td}, J=7.5,1.4 \mathrm{~Hz}) ; 8.00(1 \mathrm{H}, \mathrm{s}) ; 8.23(1 \mathrm{H}, \mathrm{dd}, J=8.1,1.4 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.1,25.5,25.5,32.5,33.3,51.3,59.3$, 111.9, 125.0, 125.2, 130.8, 132.0, 133.4, 140.9, 140.9, 149.2, 163.3.m/z $($ ESI $)=330\left(\mathrm{MH}^{+}\right) . \mathrm{m} / \mathrm{z}$ (HRMS) Found: $330.1450\left(\mathrm{MH}^{+}\right)$. $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: $m / z=330.1448$. (Found: C, 62.01; H, 5.65; $\mathrm{N}, 12.65 . \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: C, $62.00 ; \mathrm{H}, 5.81 ; \mathrm{N}, 12.76$.); $\nu_{\text {max }}$ (ATR) 2939, 2860, 1710 ($\mathrm{C}=\mathrm{O}$), 1523, 1349, 1214, $782 \mathrm{~cm}^{-1}$.
7.4.3. Methyl 1-tert-butyl-5-(2-nitrophenyl)-1H-pyrazole-4-carboxylate (5 c). Prepared from 8 a ($0.67 \mathrm{~g}, 3 \mathrm{mmol}$), DMFDMA (0.5 $\mathrm{mL}, 3.3 \mathrm{mmol})$, and tert-butylhydrazine hydrochloride $\mathbf{1 0 c}(0.47 \mathrm{~g}, 3.8$ mmol) in 1-butanol, reflux for $32 \mathrm{~h}, \mathrm{FC}$ (EtOAc/hexanes, 1:1), trituration with $i-\mathrm{Pr}_{2} \mathrm{O}$. Yield: $0.26 \mathrm{~g}(26 \%)$ of yellowish crystals; mp $106-108{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.47(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 3.59$ $(3 \mathrm{H}, \mathrm{s}), 7.40(1 \mathrm{H}, \mathrm{dd}, J=7.4,1.7 \mathrm{~Hz}), 7.66(1 \mathrm{H}, \mathrm{td}, J=7.8,1.7 \mathrm{~Hz})$, $7.71(1 \mathrm{H}, \mathrm{td}, J=7.5,1.5 \mathrm{~Hz}), 7.96(1 \mathrm{H}, \mathrm{s}), 8.24(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.5$ $\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.7,51.2,63.2,113.2,125.0$, $128.2,130.5,132.6,133.0,139.7,141.1,148.4,163.3 . m / z($ ESI $)=304$ $\left(\mathrm{MH}^{+}\right) . m / z$ (HRMS) Found: $304.1294\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: $m / z=304.1292$. (Found: C, 59.70; H, 5.56; N, 13.77. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: C, $59.40 ; \mathrm{H}, 5.65 ; \mathrm{N}, 13.85$.); $\nu_{\max }$ (ATR) 2986, 2952, $1707(\mathrm{C}=\mathrm{O}), 1519,1341,1213,1149,1020,758 \mathrm{~cm}^{-1}$.
7.4.4. Methyl 5-(2-nitrophenyl)-1-(2-pyridyl)-1H-pyrazole-4-carboxylate (5d). Prepared from 8a ($0.67 \mathrm{~g}, 3 \mathrm{mmol}$), DMFDMA (0.5 $\mathrm{mL}, 3.3 \mathrm{mmol}$), 2-hydrazinopyridine $10 \mathrm{~d}(0.41 \mathrm{~g}, 3.8 \mathrm{mmol})$, and 37% hydrochloric acid (6 drops) in 1-butanol, reflux for $24 \mathrm{~h}, \mathrm{FC}$ (EtOAc/ hexanes, $1: 1$), trituration with $i-\operatorname{Pr}_{2} \mathrm{O}$. Yield: $0.38 \mathrm{~g}(40 \%)$ of yellowish crystals; mp $137-139{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.69(3 \mathrm{H}$, s); $7.11(1 \mathrm{H}, \mathrm{ddd}, J=7.4,4.9,1.1 \mathrm{~Hz}) ; 7.36(1 \mathrm{H}, \mathrm{dd}, J=7.3,1.7 \mathrm{~Hz})$; $7.60(1 \mathrm{H}, \mathrm{td}, J=7.5,1.7 \mathrm{~Hz}) ; 7.64(1 \mathrm{H}, \mathrm{td}, J=7.5,1.6 \mathrm{~Hz}) ; 7.76(1 \mathrm{H}$, ddd, $J=8.3,7.4,1.9 \mathrm{~Hz}) ; 7.86(1 \mathrm{H}, \mathrm{dt}, J=8.2,1.0 \mathrm{~Hz}) ; 8.00(1 \mathrm{H}$, ddd, $J=4.8,1.8,0.8 \mathrm{~Hz}) ; 8.20(1 \mathrm{H}, \mathrm{s}) ; 8.25(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 51.6,115.0,116.6,122.6,124.5,127.1$, 129.9, 132.3, 133.0, 138.7, 142.4, 142.6, 147.7, 148.4, 151.7, 162.9. m/z $(\mathrm{ESI})=325\left(\mathrm{MH}^{+}\right) . \mathrm{m} / \mathrm{z}(\mathrm{HRMS})$ Found: $325.0933\left(\mathrm{MH}^{+}\right)$. $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires: $m / z=325.0931$. (Found: C, $59.29 ; \mathrm{H}, 3.42$; $\mathrm{N}, 17.40 . \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires: C, 59.26; H, 3.73; $\left.\mathrm{N}, 17.28.\right)$; $\nu_{\text {max }}$ (ATR) 3122, 2950, 1707 ($\mathrm{C}=\mathrm{O}$), 1517, 1345, 1290, 1240, 781, 759 cm^{-1}.
7.4.5. Methyl 1-(2-chlorophenyl)-5-(2-nitrophenyl)-1H-pyrazole-4-carboxylate (5e). Prepared from 8 a ($2.23 \mathrm{~g}, 10 \mathrm{mmol}$), DMFDMA $(1.5 \mathrm{~mL}, 10 \mathrm{mmol})$, and 2-chlorophenylhydrazine hydrochloride $\mathbf{1 0 e}$ $(1.97 \mathrm{~g}, 11 \mathrm{mmol})$ in 1-propanol, reflux for 24 h , DVFC (EtOAc/ hexanes, 1:2), trituration with $\mathrm{Et}_{2} \mathrm{O}$. Yield: 2.75 g (77\%) of white crystals; mp $113-117{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.70(3 \mathrm{H}$, s); $7.20(1 \mathrm{H}, \mathrm{td}, J=7.7,0.9 \mathrm{~Hz}) ; 7.31(1 \mathrm{H}, \mathrm{td}, J=7.9,1.4 \mathrm{~Hz}) ; 7.35$ $(2 \mathrm{H}, \mathrm{dd}, J=7.8,1.1 \mathrm{~Hz}) ; 7.45(1 \mathrm{H}, \mathrm{dd}, J=8.0,0.6 \mathrm{~Hz}) ; 7.50-7.57$ $(2 \mathrm{H}, \mathrm{m}) ; 8.06-8.11(1 \mathrm{H}, \mathrm{m}) ; 8.22(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 51.5,113.1,124.1,124.6,127.7,129.6,130.3,130.6,131.1$, $132.1,132.2,133.0,136.2,142.3,143.5,148.8,162.9 . m / z(\mathrm{ESI})=358$, $360\left(\mathrm{MH}^{+}\right) . m / z$ (HRMS) Found: $358.0589\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClN}_{3} \mathrm{O}_{4}$ requires: $m / z=358.0589$. (Found: $\mathrm{C}, 57.13 ; \mathrm{H}, 3.29 ; \mathrm{N}, 11.64$. $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{4}$ requires: C, 57.07, $\mathrm{H}, 3.38, \mathrm{~N}, 11.75$.); $\nu_{\text {max }}$ (ATR) 2950, 1712 ($\mathrm{C}=\mathrm{O}$), 1522, 1498, 1346, 1237, 1136, $758 \mathrm{~cm}^{-1}$.
7.4.6. Methyl 5-(2-nitrophenyl)-1-(2,4,6-trichlorophenyl)-1H-pyr-azole-4-carboxylate (5f). Prepared from 8a ($2.23 \mathrm{~g}, 10 \mathrm{mmol}$), DMFDMA ($1.5 \mathrm{~mL}, 10 \mathrm{mmol}$), 2,4,6-trichlorophenylhydrazine $\mathbf{1 0 f}$ $(2.33 \mathrm{~g}, 11 \mathrm{mmol})$, and $37 \% \mathrm{aq} . \mathrm{HCl}(0.7 \mathrm{~mL})$ in 1-propanol, reflux for $24 \mathrm{~h}, \mathrm{DVFC}$ (EtOAc/hexanes, 1:1), trituration with $i-\mathrm{Pr}_{2} \mathrm{O}$. Yield: 3.57 $\mathrm{g}(84 \%)$ of white crystals; $\mathrm{mp} 175-177{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.72(3 \mathrm{H}, \mathrm{s}) ; 7.31(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}) ; 7.33(1 \mathrm{H}, \mathrm{dd}, J=7.5$, $1.8 \mathrm{~Hz}) ; 7.44(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}) ; 7.54(1 \mathrm{H}, \mathrm{td}, J=7.5,1.6 \mathrm{~Hz}) ; 7.58$ $(1 \mathrm{H}, \mathrm{td}, J=7.8,1.8 \mathrm{~Hz}) ; 8.20(1 \mathrm{H}, \mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}) ; 8.28(1 \mathrm{H}, \mathrm{s})$. ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 51.7,114.6,123.1,125.6,128.8,129.2$, 131.1, 131.3, 133.1, 133.3, 135.5, 136.2, 137.0, 143.3, 143.8, 148.4, 162.9. $\mathrm{m} / \mathrm{z}(\mathrm{ESI})=426,428,430\left(\mathrm{MH}^{+}\right) . \mathrm{m} / z$ (HRMS) Found: $425.9810\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{17} \mathrm{H}_{11} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: $m / z=425.9810$. (Found: C, 47.89; H, 2.34; N, 9.73. $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: C, $47.86, \mathrm{H}, 2.36$, $\mathrm{N}, 9.85$.$) ; \nu_{\max }(\mathrm{ATR}) 3094,1709(\mathrm{C}=\mathrm{O}), 1530,1352,1230,957$, $807,757 \mathrm{~cm}^{-1}$.
7.4.7. Methyl 1-(4-methoxyphenyl)-5-(2-nitrophenyl)-1H-pyra-zole-4-carboxylate (5g). Prepared from $8 \mathbf{a}(0.67 \mathrm{~g}, 3 \mathrm{mmol})$, DMFDMA ($0.5 \mathrm{~mL}, 3.3 \mathrm{mmol}$), and 4-methoxyphenylhydrazine hydrochloride $10 \mathrm{~g}(0.63 \mathrm{~g}, 3.6 \mathrm{mmol})$ in 1-butanol, reflux for $16 \mathrm{~h}, \mathrm{FC}$ (EtOAc/hexanes, $1: 2$). Yield: $0.868 \mathrm{~g}(82 \%)$ of brown oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.68(3 \mathrm{H}, \mathrm{s}) ; 3.76(3 \mathrm{H}, \mathrm{s}) ; 6.77-6.81(2 \mathrm{H}, \mathrm{m})$; $7.19-7.23(3 \mathrm{H}, \mathrm{m}) ; 7.54-7.58(2 \mathrm{H}, \mathrm{m}) ; 8.10-8.13(1 \mathrm{H}, \mathrm{m}) ; 8.15$ $(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 51.4,55.4,113.2,114.2$, 124.6, 125.0, 126.4, 130.4, 131.7, 132.7, 133.0, 141.6, 141.9, 149.0, 159.4, 163.0. $m / z(\mathrm{ESI})=354\left(\mathrm{MH}^{+}\right) . m / z(\mathrm{HRMS})$ Found: 354.1098 $\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires: $m / z=354.1084$. $\nu_{\text {max }}$ (ATR) 2953, 1711 (C=O), 1512, 1348, 1228, 1135, 1016, 834, 808, 781, 752 cm^{-1}.
7.4.8. Methyl 1-(2-bromophenyl)-5-(2-nitrophenyl)-1H-pyrazole-4-carboxylate (5h). Prepared from 8a ($446 \mathrm{mg}, 2 \mathrm{mmol}$), DMFDMA $(0.3 \mathrm{~mL}, 2 \mathrm{mmol})$, 2-bromophenylhydrazine $10 \mathrm{~h}(492 \mathrm{mg}, 2.2 \mathrm{mmol})$, and 37% aq. HCl (4 drops) in 1-propanol, reflux for 24 h, DVFC (EtOAc/hexanes, $1: 2$). Yield: $80 \mathrm{mg}(72 \%)$ of brown oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.70(3 \mathrm{H}, \mathrm{s}) ; 7.23-7.27(2 \mathrm{H}, \mathrm{m}) ; 7.33-7.37$ $(1 \mathrm{H}, \mathrm{m}) ; 7.39-7.44(1 \mathrm{H}, \mathrm{m}) ; 7.51-7.58(2 \mathrm{H}, \mathrm{m}) ; 7.62-7.67(1 \mathrm{H}$, $\mathrm{m}) ; 8.07-8.11(1 \mathrm{H}, \mathrm{m}) ; 8.23(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $51.5,113.2,122.1,124.1,124.6,128.4,129.6,130.7,131.3,132.2$,
133.1, 133.6, 137.9, 142.2, 143.3, 148.9, 163.0. $m / z(E S I)=402,404$ $\left(\mathrm{MH}^{+}\right) . m / z$ (HRMS) Found: $402.0082\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrN}_{3} \mathrm{O}_{4}$ requires: $m / z=402.0084 . \nu_{\max }(\mathrm{ATR}) 2951,1711(\mathrm{C}=\mathrm{O})$, 1525, 1497, 1436, 1347, 1232, 1137, 755, $730 \mathrm{~cm}^{-1}$.
7.4.9. Methyl 1-methyl-5-(2-nitrophenyl)-1H-pyrazole-4-carboxylate (5i). Prepared from 8a ($0.67 \mathrm{~g}, 3 \mathrm{mmol}$), DMFDMA (0.5 mL , $3.3 \mathrm{mmol})$, methylhydrazine $\mathbf{1 0 i}(0.17 \mathrm{~g}, 3.8 \mathrm{mmol})$, and 37% hydrochloric acid (6 drops) in 1-propanol, reflux for $4 \mathrm{~h}, \mathrm{FC}$ (EtOAc/ hexanes, $3: 1$), trituration with i - $\mathrm{Pr}_{2} \mathrm{O}$. Yield: $0.45 \mathrm{~g}(58 \%)$ of yellowish crystals; mp $114-116{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.63(3 \mathrm{H}$, s); $3.72(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me})$; $7.40\left(1 \mathrm{H}, \mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right) ; 7.70(1 \mathrm{H}$, td, $\left.J=7.8,1.5 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right) ; 7.77\left(1 \mathrm{H}, \mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right) ; 7.97$ $(1 \mathrm{H}, \mathrm{s}) ; 8.23\left(1 \mathrm{H}, \mathrm{dd}, J=8.1,1.3 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 37.4,51.3,112.9,124.8,125.0,130.9,132.2,133.5,140.9$, 142.0, 148.9, 163.1. $m / z(E S I)=262\left(\mathrm{MH}^{+}\right) . m / z$ (HRMS) Found: $262.0825\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: $m / z=262.0822$. (Found: C, 55.15; H, 4.03; N, 16.03. $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: $\mathrm{C}, 55.17 ; \mathrm{H}, 4.24 ; \mathrm{N}$, 16.09.); $\nu_{\max }$ (ATR) 2951, 1707 ($\mathrm{C}=\mathrm{O}$), 1529, $1355,1215,757 \mathrm{~cm}^{-1}$.
7.4.10. Methyl 5-(2-nitrophenyl)-1-(2,2,2-trifluoroethyl)-1H-pyra-zole-4-carboxylate (5j). Prepared from $8 \mathbf{a}(0.67 \mathrm{~g}, 3 \mathrm{mmol})$, DMFDMA ($0.5 \mathrm{~mL}, 3.3 \mathrm{mmol}$), 2,2,2-trifluoroethylhydrazine $\mathbf{1 0} \mathbf{j}$ ($0.43 \mathrm{~g}, 3.8 \mathrm{mmol}$), and 37% hydrochloric acid (6 drops) in 1-butanol, reflux for $4 \mathrm{~h}, \mathrm{FC}(\mathrm{EtOAc} /$ hexanes, $1: 1)$, trituration with $i-\mathrm{Pr}_{2} \mathrm{O}$. Yield: $0.67 \mathrm{~g}(63 \%)$ of yellowish crystals; mp $106-108{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.64(3 \mathrm{H}, \mathrm{s}) ; 4.41$ and $4.70(2 \mathrm{H}, 2$ sextets, $1: 1, J=$ $16.2 \mathrm{~Hz}) ; 7.25(1 \mathrm{H}, \mathrm{brd}, J=7.4 \mathrm{~Hz}) ; 7.75(1 \mathrm{H}, \mathrm{td}, J=7.8,1.6 \mathrm{~Hz})$; $7.80(1 \mathrm{H}, \mathrm{td}, J=7.5,1.5 \mathrm{~Hz}) ; 8.08(1 \mathrm{H}, \mathrm{s}) ; 8.26(1 \mathrm{H}, \mathrm{dd}, J=8.1,1.5$ $\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 50.9(\mathrm{q}, J=35.6 \mathrm{~Hz}), 51.6$, 114.3, $122.6(\mathrm{q}, J=280 \mathrm{~Hz}), 123.4,125.2,131.6,132.8,133.7,142.4$, 143.7, 148.8, 162.5. $m / z(E S I)=330\left(\mathrm{MH}^{+}\right) . m / z$ (HRMS) Found: 330.0694 $\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: $m / z=330.0696$. (Found: C, 47.71; H, 2.84; N, 12.56. $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: C, 47.43; H, 3.06; $\mathrm{N}, 12.76$.) ; $\nu_{\max }(\mathrm{ATR}) 2972,1702(\mathrm{C}=\mathrm{O}), 1526,1237,1214,1158$, $785 \mathrm{~cm}^{-1}$.
7.4.11. Methyl 1-(2-ethoxy-2-oxoethyl)-5-(2-nitrophenyl)-1H-pyr-azole-4-carboxylate ($5 k$). Prepared from $8 \mathbf{a}(0.67 \mathrm{~g}, 3 \mathrm{mmol}$), DMFDMA ($0.5 \mathrm{~mL}, 3.3 \mathrm{mmol}$), and ethyl 2-hydrazinoacetate hydrochloride $10 \mathrm{k}(0.59 \mathrm{~g}, 3.8 \mathrm{mmol})$ in 1-butanol, reflux for 4 h , FC (EtOAc/hexanes, 1:1). Yield: $0.23 \mathrm{~g}(24 \%)$ of yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.24(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}) ; 3.64(3 \mathrm{H}, \mathrm{s}) ; 4.17$ and $4.23(2 \mathrm{H}, 2 \mathrm{dq}, 1: 1, J=10.8,7.1 \mathrm{~Hz}) ; 4.56$ and $4.93(2 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=$ $17.4 \mathrm{~Hz}) ; 7.50(1 \mathrm{H}, \mathrm{dd}, J=7.2,1.8 \mathrm{~Hz}) ; 7.70(1 \mathrm{H}, \mathrm{td}, J=7.6,1.7 \mathrm{~Hz})$; $7.73(1 \mathrm{H}, \mathrm{td}, J=7.5,1.5 \mathrm{~Hz}) ; 8.04(1 \mathrm{H}, \mathrm{s}) ; 8.21(1 \mathrm{H}, \mathrm{dd}, J=7.9,1.6$ $\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.2,51.5,51.6,62.3,113.6$, 124.0, 124.9, 131.2, 132.6, 133.4, 141.8, 142.8, 149.0, 162.9, 167.3. m / z $(E S I)=334\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: 334.1030 $\left(\mathrm{MH}^{+}\right)$. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires: $m / z=334.1034 . \nu_{\max }$ (ATR) 2954, 1746 ($\mathrm{C}=\mathrm{O}), 1712(\mathrm{C}=\mathrm{O}), 1528,1349,1214,1022,783 \mathrm{~cm}^{-1}$.
7.4.12. Methyl 5-(2-nitrophenyl)-1-(6-phenylpyridazin-3-yl)-1H-pyrazole-4-carboxylate (5I). Prepared from 8a ($0.67 \mathrm{~g}, 3 \mathrm{mmol}$), DMFDMA ($0.5 \mathrm{~mL}, 3.3 \mathrm{mmol}$), 3-hydrazino-6-phenylpyridazine 101 ($0.80 \mathrm{~g}, 3.8 \mathrm{mmol}$), and 37% hydrochloric acid (6 drops) in 1-butanol, reflux for $24 \mathrm{~h}, \mathrm{FC}(\mathrm{EtOAc} /$ hexanes, $1: 1)$, trituration with $i-\mathrm{Pr}_{2} \mathrm{O}$. Yield: $1.02 \mathrm{~g}(85 \%)$ of brownish crystals; $\mathrm{mp} 181-184{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.69(3 \mathrm{H}, \mathrm{s}) ; 7.45-7.49(3 \mathrm{H}, \mathrm{m}) ; 7.50(1 \mathrm{H}, \mathrm{br}$ dd, $J=7.6,1.5 \mathrm{~Hz}) ; 7.64(1 \mathrm{H}, \mathrm{td}, J=8.2,1.5 \mathrm{~Hz}) ; 7.71(1 \mathrm{H}, \mathrm{td}, J=$ $7.5,1.3 \mathrm{~Hz}) ; 7.92-7.96(2 \mathrm{H}, \mathrm{m}) ; 7.96(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}) ; 8.21(1 \mathrm{H}$, d, $J=9.2 \mathrm{~Hz}) ; 8.27(1 \mathrm{H}, \mathrm{s}) ; 8.28(1 \mathrm{H}$, br dd, $J=8.4,1.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 51.7,115.8,121.6,125.0,126.4,126.7$, 127.3, 129.2, 130.4, 130.4, 132.4, 133.4, 135.4, 142.9, 143.5, 147.8, 154.4, 159.0, 162.6. $m / z(\mathrm{ESI})=402\left(\mathrm{MH}^{+}\right) . m / z$ (HRMS) Found: 402.1197 $\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires: $m / z=402.1197$. (Found: C, 62.98; H, 3.50; N, 17.33. $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires: C, 62.84; H, 3.77; N, 17.45.); $\nu_{\max }(\mathrm{ATR}) 2952,1716(\mathrm{C}=\mathrm{O}), 1535,1350,1244,1131,781$, $740,684 \mathrm{~cm}^{-1}$.
7.5. General Procedure for the Synthesis of 1-Substituted 5-(2-Nitrophenyl)-1H-pyrazole-4-carboxylic acids 2a-l. A mixture of the ester $5(2.7 \mathrm{mmol})$, methanol $(30 \mathrm{~mL})$, and 2 M aq. $\mathrm{NaOH}(5.9$ $\mathrm{mL}, 11.8 \mathrm{mmol}$) was stirred at $50{ }^{\circ} \mathrm{C}$ for 24 h . Methanol was evaporated in vacuo ($40 \mathrm{mbar}, 40^{\circ} \mathrm{C}$) and the aqueous solution was
acidified with 1 M aq. HCl to $\mathrm{pH} \sim 1$. The precipitate was collected by filtration and washed with water $(2 \times 5 \mathrm{~mL})$ to give $\mathbf{2 a}-\mathbf{g}$.
7.5.1. 5-(2-Nitrophenyl)-1-phenyl-1H-pyrazole-4-carboxylic acid (2a). Prepared from $5 \mathrm{a}(3.23 \mathrm{~g}, 10 \mathrm{mmol})$. Yield: $2.977 \mathrm{~g}(96 \%)$ of white crystals; mp $210-213{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19-$ $7.24(1 \mathrm{H}, \mathrm{m}) ; 7.25-7.32(5 \mathrm{H}, \mathrm{m}) ; 7.53-7.60(2 \mathrm{H}, \mathrm{m}) ; 8.09-8.15$ $(1 \mathrm{H}, \mathrm{m}) ; 8.20(1 \mathrm{H}, \mathrm{s}) ; 9.86\left(1 \mathrm{H}, \mathrm{br}\right.$ s). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 113.0,124.6,124.8,125.0,128.6,129.1,130.6,132.7,133.1,138.5$, $142.5,142.9,148.7,167.8 . m / z(E S I)=310\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: $310.0829\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: $m / z=310.0828$. (Found: C, 61.71; H, 3.64; N, 13.34. $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: C, 62.14; H, 3.58; N, 13.59.); $\nu_{\max }$ (ATR) 3412, 2876, 1672 (C=O), 1532, 1501, 1356, $783 \mathrm{~cm}^{-1}$.
7.5.2. 1-Cyclohexyl-5-(2-nitrophenyl)-1H-pyrazole-4-carboxylic acid (2b). Prepared from $5 \mathbf{5 b}(0.90 \mathrm{~g}, 2.7 \mathrm{mmol})$. Yield: 0.66 g (78%) of white crystals; mp $235-238{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 1.07-1.19(3 \mathrm{H}, \mathrm{m}) ; 1.56(1 \mathrm{H}, \mathrm{br} s) ; 1.67-1.99(6 \mathrm{H}, \mathrm{m})$; $3.73(1 \mathrm{H}, \mathrm{qt}, J=11.5,4.0 \mathrm{~Hz}) ; 7.59$ and $7.60(1 \mathrm{H}, 2 \mathrm{dd}, 1 ; 1, J=7.6,1.2$ $\mathrm{Hz}) ; 7.80$ and $7.84(1 \mathrm{H}, 2 \mathrm{td}, J=8.1$ and 1.4 Hz$) ; 7.88$ and $7.90(1 \mathrm{H}$, 2 td , td, $J=7.5,1.2 \mathrm{~Hz}) ; 7.92$ and $7.99(1 \mathrm{H}, 2 \mathrm{~s}, 1: 1) ; 8.23$ and 8.26 $(1 \mathrm{H}, 2 \mathrm{dd}, J=8.2,1.3 \mathrm{~Hz}) ; 12.18(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $(126 \mathrm{MHz}$, DMSO-d d_{6} $\delta 24.7,24.7,32.2,32.5,58.1,112.0,124.2,124.7,131.1$, 132.1, 133.8, 140.4, 148.7, 163.4. $\mathrm{m} / z(\mathrm{ESI})=316\left(\mathrm{MH}^{+}\right) . \mathrm{m} / z$ (HRMS) Found: $316.1294\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: $\mathrm{m} / z=$ 316.1292. (Found: C, 59.90; H, 5.28; N, 13.08. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}$ requires: C, 60.09; H, 5.52; N, 13.14.); $\nu_{\max }$ (ATR) 2941, 2857, 1666 ($\mathrm{C}=\mathrm{O}$) , 1531, 1346, 1224, 779, $695 \mathrm{~cm}^{-1}$.
7.5.3. 1-tert-Butyl-5-(2-nitrophenyl)-1H-pyrazole-4-carboxylic acid (2c). Prepared from $5 \mathrm{c}(0.53 \mathrm{~g}, 1.7 \mathrm{mmol})$. Yield: 0.51 g (100\%) of white crystals; mp 191-194 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d $d_{6} \delta 1.39(9 \mathrm{H}, \mathrm{s}) ; 7.62(1 \mathrm{H}, \mathrm{dd}, J=7.5,1.6 \mathrm{~Hz}) ; 7.77(1 \mathrm{H}, \mathrm{td}$, $J=7.8,1.6 \mathrm{~Hz}) ; 7.82(1 \mathrm{H}, \mathrm{td}, J=7.5,1.4 \mathrm{~Hz}) ; 7.90(1 \mathrm{H}, \mathrm{s}) ; 8.22(1 \mathrm{H}$, dd, $J=8.2,1.32 \mathrm{~Hz}) ; 12.07(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- $\left.d_{6}\right)$ $\delta 30.2,62.6,113.4,124.7,127.3,130.9,132.9,133.4,139.4,140.5$, 148.0, 163.4. $m / z(\mathrm{ESI})=290\left(\mathrm{MH}^{+}\right) . m / z(\mathrm{HRMS})$ Found: $290.1136\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: $m / z=290.1135$. (Found: C, 58.15; H, 5.14; N, 14.27. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: C, 58.13 ; $\mathrm{H}, 5.23$; N , 14.53.); $\nu_{\max }(\mathrm{ATR}) 3459,2989,1694(\mathrm{C}=\mathrm{O}), 1521,1354,1231,77$ cm^{-1}.
7.5.4. 5-(2-Nitrophenyl)-1-(2-pyridyl)-1H-pyrazole-4-carboxylic acid (2d). Prepared from 5d (1.55 g, 4.8 mmol). Yield: 1.30 g (84\%) of white crystals; mp $175-177{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 7.28(1 \mathrm{H}$, ddd, $J=7.4,4.9,1.1 \mathrm{~Hz}) ; 7.44(1 \mathrm{H}, \mathrm{dd}, J=$ $7.1,2.0 \mathrm{~Hz}) ; 7.70(1 \mathrm{H}, \mathrm{td}, J=7.5,1.9 \mathrm{~Hz}) ; 7.72(1 \mathrm{H}, \mathrm{td}, J=7.4,1.7$ $\mathrm{Hz}) ; 7.85(1 \mathrm{H}, \mathrm{dt}, J=8.3,1.0 \mathrm{~Hz}) ; 7.97(1 \mathrm{H}, \mathrm{ddd}, J=8.9,7.5,1.9$ $\mathrm{Hz}) ; 8.02(1 \mathrm{H}, \mathrm{ddd}, J=4.8,1.8,0.8 \mathrm{~Hz}) ; 8.24(1 \mathrm{H}, \mathrm{dd}, J=7.1,2.0$ $\mathrm{Hz}) ; 8.28(1 \mathrm{H}, \mathrm{s}) ; 12.60(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- $\left.d_{6}\right) \delta$ $115.5,116.8,123.1,124.2,126.5,130.3,132.3,133.5,139.5,141.7$, 142.6, 147.6, 147.9, 151.1, 163.2. $m / z(E S I)=311\left(\mathrm{MH}^{+}\right) . m / z$ (HRMS) Found: $311.0775\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires: $m / z=$ 311.0775. (Found: C, 57.78; H, 3.21; N, 17.89. $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires: C, 58.07 ; H, 3.25; N, 18.06.); $\nu_{\text {max }}$ (ATR) 2926, 1725 ($\mathrm{C}=\mathrm{O}$), 1529, 1435, 1349, 1238, 790, $774 \mathrm{~cm}^{-1}$.
7.5.5. 1-(2-Chlorophenyl)-5-(2-nitrophenyl)-1H-pyrazole-4-carboxylic acid (2e). Prepared from $5 \mathrm{e}(1.79 \mathrm{~g}, 5 \mathrm{mmol})$. Yield: 1.58 g (92\%) of brownish crystals; mp 217-229 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 7.19(1 \mathrm{H}, \mathrm{td}, J=7.7,1.4 \mathrm{~Hz}) ; 7.27-7.38(3 \mathrm{H}, \mathrm{m}) ; 7.41-$ $7.47(1 \mathrm{H}, \mathrm{m}) ; 7.47-7.53(2 \mathrm{H}, \mathrm{m}) ; 8.01-8.07(1 \mathrm{H}, \mathrm{m}) ; 8.23(1 \mathrm{H}, \mathrm{s})$. ${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 113.9,124.3,124.5,127.6,129.5$, 130.3, 130.4, 131.0, 132.1, 132.1, 133.0, 136.3, 142.8, 143.3, 148.7, 164.2. $m / z(\mathrm{ESI})=344,346\left(\mathrm{MH}^{+}\right) . m / z($ HRMS $)$ Found: 344.0433 $\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClN}_{3} \mathrm{O}_{4}$ requires: $m / z=344.0433$. (Found: C, 56.19 ; $\mathrm{H}, 2.80 ; \mathrm{N}, 12.26 . \mathrm{C}_{16} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}_{4}$ requires: $\mathrm{C}, 55.91 ; \mathrm{H}, 2.93 ; \mathrm{N}$, 12.23.); $\nu_{\max }(\mathrm{ATR}) 2865,1709(\mathrm{C}=\mathrm{O}), 1526,1504,1229,1206$, 1144, $777,761 \mathrm{~cm}^{-1}$.
7.5.6. 5-(2-Nitrophenyl)-1-(2,4,6-trichlorophenyl)-1H-pyrazole-4carboxylic acid (2f). Prepared from $5 \mathrm{f}(2.13 \mathrm{~g}, 5 \mathrm{mmol})$. Yield: 1.1 g (53\%) of white crystals; mp $210-216{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d d_{6}) $\overline{7.30(1 \mathrm{H}, \mathrm{dd}, J=7.2,1.8 \mathrm{~Hz}) ; 7.68-7.77(2 \mathrm{H}, \mathrm{m}) ; 7.83}$ $(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}) ; 8.00(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}) ; 8.23(1 \mathrm{H}, \mathrm{dd}, J=7.9,1.7$
$\mathrm{Hz}) ; 8.32(1 \mathrm{H}, \mathrm{s}) ; 12.75(1 \mathrm{H}, \mathrm{br} \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 114.8,122.1,125.3,129.0,129.1,130.9,131.6,132.6,133.7,133.7$, 135.4, 136.2, 142.8, 143.1, 147.6, 163.0. $\mathrm{m} / \mathrm{z}(\mathrm{ESI})=412,414,416$ $\left(\mathrm{MH}^{+}\right) . m / z$ (HRMS) Found: $411.9653\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{16} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: $m / z=411.9653$. (Found: C, 46.34; H, 1.90; N, 10.10. $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: C, 46.57; $\mathrm{H}, 1.59 ; \mathrm{N}, 10.18$.); $\nu_{\text {max }}$ (ATR) 2872, 1681 ($\mathrm{C}=\mathrm{O}$), 1533, 1498, 1479, 1350, 1298, 856, $777 \mathrm{~cm}^{-1}$.
7.5.7. 1-(4-Methoxyphenyl)-5-(2-nitrophenyl)-1H-pyrazole-4-carboxylic acid (2g). Prepared from $5 \mathrm{gg}(707 \mathrm{mg}, 2 \mathrm{mmol})$. Yield: 651 mg (96%) of brown crystals; mp $115-120{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.76(3 \mathrm{H}, \mathrm{s}) ; 6.76-6.80(2 \mathrm{H}, \mathrm{m}) ; 7.17-7.20(2 \mathrm{H}, \mathrm{m}) ;$ $7.21-7.23(1 \mathrm{H}, \mathrm{m}) ; 7.53-7.58(2 \mathrm{H}, \mathrm{m}) ; 8.08-8.12(1 \mathrm{H}, \mathrm{m}) ; 8.17$ $(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.4,113.2,114.2,124.7$, 125.0, 126.5, 130.3, 131.7, 132.8, 133.0, 142.0, 142.5, 148.8, 159.4, 166.0. $m / z(\mathrm{ESI})=340\left(\mathrm{MH}^{+}\right) . m / z(\mathrm{HRMS})$ Found: 340.0938 $\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires: $m / z=340.0928$. $\nu_{\max }$ (ATR) 2929, 1703 (C=O), 1513, 1441, 1350, 1301, 1240, 836, $767 \mathrm{~cm}^{-1}$.
7.5.8. 1-(2-Bromophenyl)-5-(2-nitrophenyl)-1H-pyrazole-4-carboxylic acid (2h). Prepared from $5 \mathrm{~h}(402 \mathrm{mg}, 1 \mathrm{mmol})$. Yield: 174 $\mathrm{mg}(45 \%)$ of white crystals; mp 224-227 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $\left.d_{6}\right) \delta 7.30(1 \mathrm{H}, \mathrm{br}$ s, 1 H of Ar$) ; 7.38(3 \mathrm{H}, \mathrm{dq}, J=7.3,3.7 \mathrm{~Hz})$; $7.65(1 \mathrm{H}, \mathrm{td}, J=7.8,1.6 \mathrm{~Hz}) ; 7.70(1 \mathrm{H}, \mathrm{td}, J=7.6,1.4 \mathrm{~Hz}) ; 7.78(1 \mathrm{H}$, dd, $J=5.9,3.4 \mathrm{~Hz}) ; 8.14(1 \mathrm{H}, \mathrm{dd}, J=8.1,1.3 \mathrm{~Hz}) ; 8.21(1 \mathrm{H}, \mathrm{s}) ; 12.61$ $\left(1 \mathrm{H}, \mathrm{br}\right.$ s). ${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 114.8,122.1,125.3$, 129.0, 129.1, 130.9, 131.6, 132.6, 133.7, 133.7, 135.4, 136.2, 142.8, 143.1, 147.6, 163.0. $m / z(E S I)=388,390\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: $387.9921\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{BrN}_{3} \mathrm{O}_{4}$ requires: $m / z=387.9927$. (Found: C, 49.74; H, 2.69; N, 10.67. $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{BrN}_{3} \mathrm{O}_{4}$ requires: C , 49.51; H, 2.60; N, 10.83.); $\nu_{\max }$ (ATR) 2867, 1707 (C=O), 1525, 1502, 1350, 1228, 1207, 1145, 775, $760 \mathrm{~cm}^{-1}$.
7.6. General Procedure for the Synthesis of Methyl (S)-(5-(2-nitrophenyl)-1-substituted-1 H -pyrazole-4-carbonyl)alaninates 12a-g and Methyl (S)-(5-(2-nitrophenyl)-1-phenyl-1H-pyra-zole-4-carbonyl)prolinate (13). CDI ($0.34 \mathrm{~g}, 2.1 \mathrm{mmol}$) was added to a solution of carboxylic acid $\mathbf{2 a}-\mathbf{g}(2 \mathrm{mmol})$ in anh. MeCN $(10 \mathrm{~mL})$ and the mixture was stirred at r.t. for 2 h . Then, N methylmorpholine (0.22 mL) and (S)-amino ester hydrochloride $\mathbf{1 1 a}, \mathbf{b}(2.2 \mathrm{mmol})$ were added and stirring at r.t. was continued for 40 h. Volatile components were evaporated in vacuo, the residue was taken up in EtOAc $(30 \mathrm{~mL})$, and washed with $1 \mathrm{M} \mathrm{HCl}(3 \times 20 \mathrm{~mL})$, aq. $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$, and brine $(20 \mathrm{~mL})$. The organic phases were combined, dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the filtrate was evaporated in vacuo. The residue was purified by DVFC (silica gel, EtOAc-hexanes) or MPLC (silica gel, EtOAc-hexanes). Fractions containing the product were combined and evaporated in vacuo to give $12 \mathrm{a}-\mathrm{g}$ and 13 .
7.6.1. Methyl (S)-(5-(2-nitrophenyl)-1-phenyl-1H-pyrazole-4carbonyl)alaninate (12a). Prepared from 2a ($0.618 \mathrm{~g}, 2 \mathrm{mmol}$) and methyl (S)-alaninate hydrochloride (11a) ($0.31 \mathrm{~g}, 2.2 \mathrm{mmol}$), DVFC (EtOAc-hexanes, $1: 1$). Yield: 0.567 g (72\%) of white crystals; mp $178-179{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{22}-72.0(c=1.00, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.37$ and $1.41(3 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.1 \mathrm{~Hz}) ; 3.72$ and $3.73(3 \mathrm{H}$, $2 \mathrm{~s}, 1: 1)$; 4.64 and $4.65(1 \mathrm{H}, 2$ quintets, $1: 1, J=7.2 \mathrm{~Hz}) ; 6.29$ and 6.31 ($1 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.9 \mathrm{~Hz}$); 7.20-7.33 ($6 \mathrm{H}, \mathrm{m}$); 7.51-7.62 (2H, m); 8.03 and $8.06(1 \mathrm{H}, 2 \mathrm{~s}, 1: 1) ; 8.07-8.14(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (75.5 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.7,18.8,47.8,47.9,52.5,52.5,116.5,116.6,124.7$, $124.8,125.0,125.1,125.1,125.1,125.1,128.4,128.4,129.1,129.1$, 130.4, 130.5, 132.9, 132.9, 133.0, 133.1, 138.7, 138.7, 138.8, 139.2, $140.1,140.4,149.1,161.3,161.4,173.4,173.5 . \mathrm{m} / z(\mathrm{ESI})=395$ $\left(\mathrm{MH}^{+}\right) . m / z$ (HRMS) Found: $395.1354\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires: $m / z=395.1355$. (Found: $\mathrm{C}, 60.78 ; \mathrm{H}, 4.65 ; \mathrm{N}, 14.12$. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires: $\mathrm{C}, 60.91 ; \mathrm{H}, 4.60 ; \mathrm{N}, 14.21$.); $\nu_{\max }$ (ATR) 3341, $1745(\mathrm{C}=\mathrm{O}), 1627(\mathrm{C}=\mathrm{O}), 1565,1526,1503,1353,1295,1169$, $770 \mathrm{~cm}^{-1}$.
7.6.2. Methyl (S)-1-cyclohexyl-(5-(2-nitrophenyl)-1H-pyrazole-4carbonyl)alaninate ($12 b$). Prepared from $2 \mathrm{~b}(0.631 \mathrm{~g}, 2 \mathrm{mmol}$) and methyl (S)-alaninate hydrochloride (11a) ($0.307 \mathrm{~g}, 2.2 \mathrm{mmol}$), DVFC (EtOAc-hexanes, $2: 1$). Yield: $0.575 \mathrm{~g}(72 \%)$ of white crystals; mp $196-198{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{22}-57.8(c=0.50, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.10-1.30(3 \mathrm{H}, \mathrm{m}), 1.33$ and $1.36(3 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.1 \mathrm{~Hz})$;
$1.63(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=12.5 \mathrm{~Hz}) ; 1.80-1.89(3 \mathrm{H}, \mathrm{m}) ; 1.90-2.06(3 \mathrm{H}, \mathrm{m})$; $3.66(1 \mathrm{H}, \mathrm{tt}, J=11.8,4.0 \mathrm{~Hz}) ; 3.70$ and $3.71(3 \mathrm{H}, 2 \mathrm{~s}, 1: 1) ; 4.58$ and $4.60(1 \mathrm{H}, 2$ quintets, $1: 1, J=7.2 \mathrm{~Hz}) ; 6.17$ and $6.20(1 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=$ $7.3 \mathrm{~Hz}) ; 7.37$ and $7.39(1 \mathrm{H}, 2 \mathrm{dd}, 1: 1, J=7.5,1.5 \mathrm{~Hz}) ; 7.69$ and 7.70 $(1 \mathrm{H}, 2 \mathrm{td}, 1: 1, J=7.9,1.5 \mathrm{~Hz}) ; 7.74$ and $7.76(1 \mathrm{H}, 2 \mathrm{td}, 1: 1, J=7.5$, $1.5 \mathrm{~Hz}) ; 7.85$ and $7.88(1 \mathrm{H}, 2 \mathrm{~s}, 1: 1) ; 8.20$ and $8.21(1 \mathrm{H}, 2 \mathrm{dd}, 1: 1, J=$ 8.1, 1.4 Hz). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.8,18.9,25.1,25.1$, $25.5,25.6,32.5,33.4,47.7,47.8,52.6,52.6,59.1,59.1,114.9,115.0$, $125.0,125.1,125.2,125.2,130.8,130.9,132.3,132.3,133.4,133.4$, 137.5, 137.8, 139.2, 139.5, 149.2, 149.2, 161.7, 161.7, 173.6, 173.7. m/z $(E S I)=401\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: $401.1819\left(\mathrm{MH}^{+}\right)$. $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires: $m / z=401.1822$. (Found: C, 60.04; H, 5.98; $\mathrm{N}, 13.93 . \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires: C, $59.99 ; \mathrm{H}, 6.04 ; \mathrm{N}, 13.99$.); $\nu_{\text {max }}$ (ATR) 3319, 2939, 2857, $1714(\mathrm{C}=\mathrm{O}), 1622(\mathrm{C}=\mathrm{O}), 1524,1348$, 1214, 782, $766 \mathrm{~cm}^{-1}$.
7.6.3. Methyl (S)-1-tert-butyl-(5-(2-nitrophenyl)-1H-pyrazole-4carbonyl)alaninate (12c). Prepared from $2 \mathrm{c}(0.579 \mathrm{~g}, 2 \mathrm{mmol})$ and methyl (S)-alaninate hydrochloride (11a) ($0.31 \mathrm{~g}, 2.2 \mathrm{mmol}$), DVFC (EtOAc-hexanes, 2:1). Yield: $0.532 \mathrm{~g}(71 \%)$ of white crystals; mp $154-156{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{22}-48.3(c=0.80, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.29$ and $1.31(3 \mathrm{H}, 2 \mathrm{~d}, J=7.1 \mathrm{~Hz}, 1: 1) ; 1.45(9 \mathrm{H}, \mathrm{s}) ; 3.67$ and $3.68(3 \mathrm{H}, 2 \mathrm{~s}, 1: 1) ; 4.53$ and $4.54(1 \mathrm{H}, 2$ quintets, $J=7.2 \mathrm{~Hz}), 6.12$ and $6.16(1 \mathrm{H}, 2 \mathrm{br} \mathrm{d}, 1: 1, J=7.3 \mathrm{~Hz}) ; 7.42$ and $7.44(1 \mathrm{H}, 2 \mathrm{dd}, 1: 1, J=$ $7.5,1.6 \mathrm{~Hz}) ; 7.64$ and $7.66(1 \mathrm{H}, 2 \mathrm{td}, 1: 1, J=7.7,1.6 \mathrm{~Hz}) ; 7.68$ and $7.70(1 \mathrm{H}, 2 \mathrm{td}, 1: 1, J=7.5,1.4 \mathrm{~Hz}) ; 7.81$ and $7.83(1 \mathrm{H}, 2 \mathrm{~s}, 1: 1) ; 8.19$ and $8.20(1 \mathrm{H}, 2 \mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 18.8, 18.9, 30.7, 30.7, 47.7, 47.7, 52.5, 52.6, 63.1, 63.1, 116.4, 116.5, 125.0, 125.0, 128.0, 128.1, 130.6, 130.7, 132.8, 132.9, 132.9, 133.0, 136.4, 136.7, 139.0, 139.4, 148.7, 148.7, 161.8, 161.8, 173.6, 173.7.m/z $(E S I)=375\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: 375.1658 $\left(\mathrm{MH}^{+}\right)$. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires: $m / z=375.1663$. (Found: C, $58.52 ; \mathrm{H}, 5.83$; $\mathrm{N}, 14.43 . \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires: C, $\left.57.75 ; \mathrm{H}, 5.92 ; \mathrm{N}, 14.96.\right)$; $\nu_{\text {max }}$ (ATR) 3308, 2984, 1751 ($\mathrm{C}=\mathrm{O}$), 1627 ($\mathrm{C}=\mathrm{O}$), 1520, 1341, 1201, $1147,757 \mathrm{~cm}^{-1}$.
7.6.4. Methyl (S)-(5-(2-nitrophenyl)-1-(2-pyridyl)-1H-pyrazole-4carbonyl)alaninate (12d). Prepared from $2 \mathrm{~d}(0.621 \mathrm{~g}, 2 \mathrm{mmol})$ and methyl (S)-alaninate hydrochloride (11a) ($0.31 \mathrm{~g}, 2.2 \mathrm{mmol}$), DVFC (EtOAc-hexanes, 4:1). Yield: $0.593 \mathrm{~g}(75 \%)$ of white crystals; mp $144-146{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{22}-37.5(c=0.60, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.30$ and $1.33(3 \mathrm{H}, 2 \mathrm{~d}, 1: 1 \mathrm{~J}=7.1 \mathrm{~Hz}) ; 3.67$ and $3.70(3 \mathrm{H}$, $2 \mathrm{~s}, 1: 1) ; 4.60$ and $4.61(1 \mathrm{H}, 2$ quintets, $1: 1, J=7.1 \mathrm{~Hz}) ; 6.18$ and 6.25 $(1 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.2 \mathrm{~Hz}) ; 7.09(1 \mathrm{H}$, ddd, $J=7.4,4.9,1.0 \mathrm{~Hz}) ; 7.41$ and $7.43(1 \mathrm{H}, 2 \mathrm{dd}, 1: 1, J=7.4,2.0 \mathrm{~Hz}) ; 7.63$ and $7.64(1 \mathrm{H}, 2 \mathrm{td}, 1: 1, J=$ $7.5,2.0 \mathrm{~Hz}) ; 7.65$ and $7.68(1 \mathrm{H}, 2 \mathrm{td}, 1: 1, J=7.5,1.5 \mathrm{~Hz}) ; 7.74(1 \mathrm{H}$, dddd, $J=8.2,7.3,1.8,0.9 \mathrm{~Hz}) ; 7.86(1 \mathrm{H}, \mathrm{dd}, J=8.2,1.1 \mathrm{~Hz}) ; 7.98$ $(1 \mathrm{H}, \mathrm{ddd}, J=4.9,1.8,0.9 \mathrm{~Hz}) ; 8.13$ and $8.16(1 \mathrm{H}, 2 \mathrm{~s}, 1: 1) ; 8.24(1 \mathrm{H}$, $\mathrm{dt}, J=8.3,1.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.6,18.8,48.0$, 48.0, 52.6, 52.6, 116.3, 116.4, 118.7, 118.8, 122.4, 122.4, 124.5, 124.5, $126.6,126.9,130.2,130.3,132.4,132.6,133.1,133.3,138.7,138.7$, 139.2, 139.7, 140.4, 140.9, 147.5, 147.5, 149.0, 149.1, 151.8, 151.8, 161.4, 161.5, 173.2, 173.4. $\mathrm{m} / z(\mathrm{ESI})=396\left(\mathrm{MH}^{+}\right) . \mathrm{m} / z($ HRMS $)$ Found: 396.1298 $\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{O}_{5}$ requires: $m / z=396.1302$. (Found: C, 57.72; H, 4.33; N, 17.71. $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{5}$ requires: C, 57.72; H, 4.33; N, 17.71.); $\nu_{\max }$ (ATR) 3341, 2947, 1753 (C=O), 1620 $(\mathrm{C}=\mathrm{O}), 1562,1519,1476,1349,792,759 \mathrm{~cm}^{-1}$.
7.6.5. Methyl (S)-1-(2-chlorophenyl)-5-(2-nitrophenyl)-1H-pyra-zole-4-carbonyl)alaninate (12e). Prepared from 2e ($0.687 \mathrm{~g}, 2$ mmol) and methyl (S)-alaninate hydrochloride (11a) ($0.307 \mathrm{~g}, 2.2$ mmol), DVFC (EtOAc-hexanes, 1:2). Yield: 747 mg (87%) of white crystals; mp $135-138{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{22}-57.7(c=1.05, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.38$ and $1.42(3 \mathrm{H}, 2 \mathrm{~d}, 1: 1 \mathrm{~J}=7.1 \mathrm{~Hz}) ; 3.72$ and $3.74(3 \mathrm{H}, 2 \mathrm{~s}, 1: 1) ; 4.65$ and $4.65(1 \mathrm{H}, 2$ quintets, $1: 1, J=7.2 \mathrm{~Hz}) ; 6.35$ and $6.37(1 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.3 \mathrm{~Hz}) ; 7.20$ and $7.21(1 \mathrm{H}, 2 \mathrm{t}, 1: 1, J=7.7$ $\mathrm{Hz}) ; 7.29-7.36$ and $7.29-7.36(2 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 7.37-7.45$ and $7.37-$ $7.45(2 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 7.48-7.59$ and $7.48-7.59(2 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 8.05$ and $8.07(1 \mathrm{H}, 2 \mathrm{t}, 1: 1, J=2.1 \mathrm{~Hz}) ; 8.09$ and $8.11(1 \mathrm{H}, 2 \mathrm{~s}, 1: 1) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.7,18.8,47.8,47.9,52.5,52.6,116.1,116.1$, $124.0,124.1,124.6,124.6,127.6,127.6,129.6,129.6,130.3,130.3$, $130.6,130.7,131.0,131.0,132.2,132.2,132.3,132.4,133.0,133.1$, $136.2,136.2,139.1,139.4,141.8,142.1,148.8,148.8,161.2,161.3$,
173.4, 173.5. $m / z(\mathrm{ESI})=429,431\left(\mathrm{MH}^{+}\right) . m / z(\mathrm{HRMS})$ Found: $429.0958\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{ClN}_{4} \mathrm{O}_{5}$ requires: $m / z=429.0960$. (Found: C, $56.04 ; \mathrm{H}, 3.78 ; \mathrm{N}, 13.24 . \mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{5}$ requires: $\mathrm{C}, 56.02 ; \mathrm{H}$, 4.00; $\mathrm{N}, 13.07$.$) ; \nu_{\max }(\mathrm{ATR}) 3324,1738(\mathrm{C}=\mathrm{O}), 1625(\mathrm{C}=\mathrm{O})$, 1566, 1524, 1501, 1352, $763 \mathrm{~cm}^{-1}$.
7.6.6. Methyl (S)-(5-(2-nitrophenyl)-1-(2,4,6-trichlorophenyl)-1H-pyrazole-4-carbonyl)alaninate (12f). Prepared from $2 f(825 \mathrm{mg}, 2$ mmol) and methyl (S)-alaninate hydrochloride (11a) ($0.307 \mathrm{~g}, 2.2$ mmol), DVFC (EtOAc-hexanes, 1:1). Yield: 687 mg (69\%) of white crystals; mp $186-190{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{22}-36.0(c=0.50, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.40$ and $1.42(3 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.4 \mathrm{~Hz}) ; 3.73$ and $3.73(3 \mathrm{H}, 2 \mathrm{~s}, 1: 1) ; 4.64$ and $4.65(1 \mathrm{H}, 2$ quintets, $1: 1, J=7.1 \mathrm{~Hz}) ; 6.45$ and $6.48(1 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.3 \mathrm{~Hz}) ; 7.31$ and $7.32(1 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=2.4$ $\mathrm{Hz}) ; 7.37-7.43$ and $7.37-7.43(2 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 7.52-7.61$ and $7.52-$ $7.61(2 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 8.12-8.17$ and $8.12-8.17(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 8.17$ and $8.18(1 \mathrm{H}, 2 \mathrm{~s}, 1: 1) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.7,18.7,48.0$, 48.1, 52.6, 52.6, 117.9, 118.0, 122.9, 123.0, 125.5, 125.5, 128.6, 128.7, 129.0, 129.0, 131.0, 131.1, 131.5, 131.7, 133.0, 133.1, 133.2, 133.2, 135.5, 135.5, 135.9, 136.0, 136.8, 136.8, 140.1, 140.5, 141.7, 141.9, $148.4,148.4,161.2,161.2,173.3,173.5 . \mathrm{m} / z(\mathrm{ESI})=497,499,501$ $\left(\mathrm{MH}^{+}\right) . m / z$ (HRMS) Found: $497.0177\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires: $m / z=497.0181$. (Found: C, 48.25; H, 2.93; N, 11.15 . $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires: $\mathrm{C}, 48.26 ; \mathrm{H}, 3.04 ; \mathrm{N} 11.26$.); $\nu_{\max }$ (ATR) 3344, 3065, 2951, 1720 ($\mathrm{C}=\mathrm{O}$), 1650 ($\mathrm{C}=\mathrm{O}$), 1618, 1572, 1555, 1530, 1498, 1477, 1436, 1376, 1350, 1296, 1260, 1231, 1156, 1117, 1044, 1009, 986, 959, 928, 885, 868, 854, 832, 822, 807, 784, 761, 749, $732,708,668,652,639,614 \mathrm{~cm}^{-1}$.
7.6.7. Methyl (S)-(1-(4-methoxyphenyl)-5-(2-nitrophenyl)-1H-pyr-azole-4-carbonyl)alaninate (12g). Prepared from 2g (0.679 g, 2 mmol) and methyl (S)-alaninate hydrochloride (11a) ($0.307 \mathrm{~g}, 2.2$ mmol), DVFC (EtOAc-hexanes, 1:2). Yield: 720 mg (85%) of brownish crystals; mp $127-131{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{22}-52.4(c=0.50, \mathrm{MeOH})$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.37$ and $1.40(3 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.2$ $\mathrm{Hz}) ; 3.71$ and $3.73(3 \mathrm{H}, 2 \mathrm{~s}, 1: 1) ; 3.76(3 \mathrm{H}, \mathrm{s}) ; 4.64$ and $4.64(1 \mathrm{H}, 2$ quintets, $1: 1, J=7.2 \mathrm{~Hz}) ; 6.35$ and $6.39(1 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.4 \mathrm{~Hz})$; $6.76-6.80$ and $6.76-6.80(2 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 7.16-7.20$ and $7.16-7.20$ $(2 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 7.25-7.31$ and $7.25-7.31(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 7.52-7.61$ and $7.52-7.61(2 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 8.01$ and $8.04(1 \mathrm{H}, 2 \mathrm{~s}, 1: 1) ; 8.08-8.11$ and $8.08-8.11(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.6$, 18.7, 47.8, 47.8, 52.5, 52.5, 55.4, 55.4, 114.2, 114.2, 116.0, 116.1, 124.6, $124.7,125.0,125.1,126.5,126.5,130.3,130.4,131.7,131.7,132.9$, 132.9, 133.0, 133.1, 138.5, 138.8, 140.1, 140.5, 149.0, 149.0, 159.4, 159.4, 161.4, 161.5, 173.4, 173.6. $\mathrm{m} / z(\mathrm{ESI})=425\left(\mathrm{MH}^{+}\right) . \mathrm{m} / z$ (HRMS) Found: $425.1456\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{6}$ requires: $\mathrm{m} / \mathrm{z}=$ 425.1456. (Found: C, 59.37; H, 4.68; N, 12.96. $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{6}$ requires: C, 59.43; H, 4.75; N, 13.20.); $\nu_{\max }$ (ATR) 3339, 1758 ($\mathrm{C}=\mathrm{O}$), 1626 $(\mathrm{C}=\mathrm{O}), 1514,1254,837,753 \mathrm{~cm}^{-1}$.
7.6.8. Methyl (S)-(5-(2-nitrophenyl)-1-phenyl-1H-pyrazole-4carbonyl)prolinate (13). Prepared from 2a ($0.618 \mathrm{~g}, 2 \mathrm{mmol}$) and methyl (S)-prolinate hydrochloride (11b) ($0.306 \mathrm{~g}, 2.2 \mathrm{mmol}$), FC (EtOAc/hexanes, 1:1). Yield: $0.450 \mathrm{~g}(54 \%)$ of greenish oil; $[\alpha]_{\mathrm{D}}^{22}-$ $76.1(c=1.15, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.86-2.01$ ($2 \mathrm{H}, \mathrm{m}$); 2.05-2.31 (2H, m); 3.46-3.90 (2H, m); $3.67(3 \mathrm{H}, \mathrm{s}) ; 4.50-$ $4.62(1 \mathrm{H}, \mathrm{m}) ; 7.19-7.25(2 \mathrm{H}, \mathrm{m}) ; 7.26-7.32(3 \mathrm{H}, \mathrm{m}) ; 7.37-7.46$ $(1 \mathrm{H}, \mathrm{m}) ; 7.48-7.64(2 \mathrm{H}, \mathrm{m}) ; 7.94-8.06(2 \mathrm{H}, \mathrm{m}$ and $3-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.3,25.4,29.1,29.2,48.8,49.3,52.2,52.2,59.0$, 59.2, 117.4, 117.7, 124.6, 124.7, 125.0, 125.0, 125.0, 125.0, 128.3, 128.3, 129.1, 129.1, 130.2, 130.2, 133.0, 133.2, 133.3, 133.4, 138.6, 138.7, 139.2, 139.6, 140.0, 140.1, 148.5, 148.6, 162.5, 162.6, 172.4, 172.6. $m / z($ ESI $)=421\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: 421.1506 $\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires: $m / z=421.1506 . \nu_{\text {max }}(\mathrm{NaCl}) 2966$, $1742(\mathrm{C}=\mathrm{O}), 1620(\mathrm{C}=\mathrm{O}), 1528,1500,1351,1198,770,694 \mathrm{~cm}^{-1}$.
7.7. General Procedure for the Preparation of Methyl 1Substituted (S)-(5-(2-Aminophenyl)-1H-pyrazole-4-carbonyl)alaninates $14 \mathrm{a}-\mathrm{d}$. A mixture of nitro compound $12(1 \mathrm{mmol})$, $\mathrm{MeOH}(50 \mathrm{~mL})$, and $10 \% \mathrm{Pd}-\mathrm{C}(40 \mathrm{mg})$ was hydrogenated under 3 bar of H_{2} at r.t. for 4 h . The catalyst was removed by filtration through a glass-sintered funnel and the filtrate was evaporated in vacuo. The residue was purified by DVFC (silica gel, EtOAc-hexanes). Fractions
containing the product were combined and evaporated in vacuo to give 14.
7.7.1. Methyl (S)-(5-(2-aminophenyl)-1-phenyl-1H-pyrazole-4carbonyl)alaninate (14a). Prepared from 12a ($0.394 \mathrm{~g}, 1 \mathrm{mmol}$). Yield: $0.346 \mathrm{~g}(95 \%)$ of brown oil; $[\alpha]_{\mathrm{D}}^{22}+13.6(c=1.10, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.21$ and $1.26(3 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.1 \mathrm{~Hz})$; 3.65 and $3.68(3 \mathrm{H}, 2 \mathrm{~s}, 1: 1) ; 3.92(2 \mathrm{H}, \mathrm{br} \mathrm{s}) ; 4.61(1 \mathrm{H}$, quintet, $J=7.2$ $\mathrm{Hz}) ; 6.01$ and $6.38(1 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.2 \mathrm{~Hz}) ; 6.71-6.85(2 \mathrm{H}, \mathrm{m}) ; 6.92$ and $6.97(1 \mathrm{H}, \mathrm{dd}, J=1.6,7.7 \mathrm{~Hz}) ; 7.21-7.36(6 \mathrm{H}, \mathrm{m}) ; 8.25$ and 8.26 $(1 \mathrm{H}, 2 \mathrm{~s}, 1: 1) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.2,18.2,47.8,47.9$, $52.3,52.3,113.4,113.6,115.9,116.3,118.0,118.0,119.0,119.1,124.2$, 124.2, 127.9, 127.9, 128.9, 128.9, 131.00, 131.1, 131.6, 131.6, 138.5, 138.5, 139.1, 139.1, 142.0, 142.1, 145.3, 145.6, 161.9, 161.9, 173.0, 173.2. $m / z(E S I)=365\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: 365.1629 $\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires: $m / z=365.1614 . \nu_{\text {max }}$ (ATR) 3344, $1741(\mathrm{C}=\mathrm{O}), 1646(\mathrm{C}=\mathrm{O}), 1545,1499,1212,760 \mathrm{~cm}^{-1}$. The hydrochloride salt of $\mathbf{1 4 a}$ was obtained in the following way. The free amine $14 \mathrm{a}(0.267 \mathrm{~g}, 0.7 \mathrm{mmol})$ was dissolved in EtOAc $(15 \mathrm{~mL}), 2 \mathrm{M}$ $\mathrm{HCl}-\mathrm{EtOAc}(1 \mathrm{~mL}, 2 \mathrm{mmol})$ was added, and the mixture was stirred at r.t. for 16 h . The precipitate was collected by filtration and washed with $\mathrm{EtOAc}(5 \mathrm{~mL})$ to give $14 \mathrm{a} \cdot \mathrm{HCl}$. Yield: $0.060 \mathrm{~g}(21 \%)$ of white solid; mp $130-136{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{22}-13.3(c=0.15, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 1.35$ and $1.40(3 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.2 \mathrm{~Hz}) ; 3.58$ and $3.66(3 \mathrm{H}, \mathrm{s}) ; 4.48(1 \mathrm{H}$, quintet $J=7.2 \mathrm{~Hz}) ; 6.87-6.93(1 \mathrm{H}, \mathrm{m})$; $6.97-7.10(1 \mathrm{H}, \mathrm{m}) ; 7.26-7.57(7 \mathrm{H}, \mathrm{m}) ; 8.40$ and $8.47(1 \mathrm{H}, 2 \mathrm{~s}, 1: 1)$; 8.93 and $9.02(1 \mathrm{H}, 2 \mathrm{br} \mathrm{s}, 1: 1) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ $16.9,16.9,47.9,48.0,52.0,52.1,116.9,117.0,125.5,125.5,125.7$, 125.7, 128.2, 128.2, 128.8, 128.8, 130.7, 130.8, 132.3, 132.3, 138.8, 138.8, 140.0, 140.1, 163.2, 163.3, 172.6, 172.8. $\mathrm{m} / z(\mathrm{ESI})=365$ $\left(\mathrm{MH}^{+}\right) . m / z$ (HRMS) Found: $365.1608\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires: $m / z=365.1614$. (Found: C, $60.55 ; \mathrm{H}, 5.18 ; \mathrm{N}, 13.46$. $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{O}_{3}$ requires: $\mathrm{C}, 59.92 ; \mathrm{H}, 5.28 ; \mathrm{N}, 13.98$.); $\nu_{\max }$ (ATR) 3446, 1739 ($\mathrm{C}=\mathrm{O}$) , $1630(\mathrm{C}=\mathrm{O}), 1500,1458,1218,766 \mathrm{~cm}^{-1}$.
7.7.2. Methyl (S)-(5-(2-aminophenyl)-1-cyclohexyl-1H-pyrazole-4-carbonyl)alaninate (14b). Prepared from 12b ($0.400 \mathrm{~g}, 1 \mathrm{mmol}$), FC (EtOAc/hexanes, 1:3). Yield: 0.323 g (87\%) of white crystals; mp $141-146{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{22}+28.2(c=0.50, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): 1.14-1.26$ and $1.14-1.26(3 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 1.17$ and $1.21(3 \mathrm{H}$, $2 \mathrm{~d}, 1: 1, J=7.1 \mathrm{~Hz}) ; 1.60-1.67$ and $1.60-1.67(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 1.78-$ 1.89 and $1.78-1.89(4 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 1.89-2.03$ and $1.89-2.03(2 \mathrm{H}, 2 \mathrm{~m}$, $1: 1)$; 3.64 and $3.66(3 \mathrm{H}, 2 \mathrm{~s}, 1: 1)$; $3.72(2 \mathrm{H}, \mathrm{br}$ s); $3.52-3.68$ and $3.70-3.86(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 4.57$ and $4.57(1 \mathrm{H}, 2$ quintets, $1: 1, J=7.1$ $\mathrm{Hz}) ; 6.08$ and $6.12(1 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.4 \mathrm{~Hz}) ; 6.83-6.95(2 \mathrm{H}, 2 \mathrm{~m}$, $1: 1) ; 7.07$ and $7.12(1 \mathrm{H}, 2 \mathrm{dd}, 1: 1, J=7.6,1.6 \mathrm{~Hz}) ; 7.33-7.38$ and $7.33-7.38(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 8.11$ and $8.12(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 18.3,18.3,25.0,25.0,25.4,25.4,32.8,33.2,47.7,47.7,52.3$, $52.3,58.3,58.3,113.1,113.2,115.7,115.7,115.9,116.3,119.0,119.0$, 130.6, 130.7, 131.6, 131.6, 137.6, 137.6, 140.7, 140.8, 145.4, 145.6, 162.2, 162.2, 173.2, 173.3. $m / z(E S I)=371\left(\mathrm{MH}^{+}\right) . m / z($ HRMS $)$ Found: $371.2075\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires: $m / z=371.2078$. (Found: C, 63.39; H, 7.29; N, 14.71. $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ requires: C, 63.31; H, 7.17; N, 14.77.); $\nu_{\max }$ (ATR) 3394, 2928, 2857, 1747 (C=O), $1653(\mathrm{C}=\mathrm{O}), 1629,1543,1201,1141,828,751 \mathrm{~cm}^{-1}$.
7.7.3. Methyl (S)-(5-(2-aminophenyl)-1-tert-butyl-1H-pyrazole-4carbonyl)alaninate (14c). Prepared from 12c ($0.374 \mathrm{~g}, 1 \mathrm{mmol}$), FC (EtOAc/hexanes, 1:3). Yield: $0.140 \mathrm{~g}(39 \%)$ of yellow solid, mp 162$164{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{22}+12.1(c=1.00, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.08$ and $1.12(3 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.2 \mathrm{~Hz}) ; 1.50(9 \mathrm{H}, \mathrm{br} \mathrm{s}) ; 3.62$ and $3.65(3 \mathrm{H}, 2 \mathrm{~s}, 1: 1) ; 3.68$ and $3.75(2 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=5.2 \mathrm{~Hz}) ; 4.50$ and $4.54(1 \mathrm{H}, \mathrm{d}, J=8.0$ and 7.2 Hz$)$; 5.82 and $5.87(1 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.2$ $\mathrm{Hz}) ; 6.78-6.86$ and $6.86-6.93(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 7.13(1 \mathrm{H}, \mathrm{d}, J=7.6$ $\mathrm{Hz}) ; 7.20(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}) ; 7.33$ and $7.35(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 8.08(1 \mathrm{H}$, br s). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.1,18.1,30.3,30.3,47.6,47.7$, $52.2,52.2,62.5,62.5,115.7,115.8,116.1,116.3,117.6,117.7,118.6$, $118.6,131.2,131.3,131.5,131.6,137.6,137.6,139.6,139.7,145.4$, 145.6, 162.2, 162.2, 173.1, 173.3. $m / z(\mathrm{ESI})=345\left(\mathrm{MH}^{+}\right) . m / z$ (HRMS) Found: $345.1918\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires: $\mathrm{m} / z=$ 345.1921. $\nu_{\max }$ (ATR) 3403, 3332, 2924, 1748 ($\mathrm{C}=\mathrm{O}$), 1637 ($\mathrm{C}=$ O), 1537, 1455, 1196, 1144, $752 \mathrm{~cm}^{-1}$.
7.8. Synthesis of Methyl (S)-\{1-cyclohexyl-5-[2-(alkylamino)-phenyl]-1H-pyrazole-4-carbonyl\}alaninates 15a,b. A mixture of nitro compound $\mathbf{1 2 b}(400 \mathrm{mg}, 1 \mathrm{mmol}), \mathrm{MeOH}(30 \mathrm{~mL})$, acetone (20 mL , excess) or isobutyraldehyde ($128 \mu \mathrm{~L}, 1.4 \mathrm{mmol}$), 2 M aq. $\mathrm{HCl}(1$ drop, $\sim 20 \mathrm{mg}$), and $10 \% \mathrm{Pd}-\mathrm{C}(40 \mathrm{mg})$ was hydrogenated under 4 bar of H_{2} at r.t. for 8 h . The catalyst was removed by filtration through a glass-sintered funnel and the filtrate was evaporated in vacuo. The residue was purified by DVFC (EtOAc/hexanes, 1:2). Fractions containing the product were combined and evaporated in vacuo to give $15 \mathrm{a}, \mathrm{b}$.
7.8.1. Methyl (S)-\{1-cyclohexyl-5-[2-(isopropylamino)phenyl]-1H-pyrazole-4-carbonyl\}-alaninate (15a). Prepared from 12b (400 mg , 1 mmol) and acetone (20 mL , excess). Yield: $0.242 \mathrm{~g}(59 \%)$ of white solid; mp $118-121{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{22}+16.6(c=0.85, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.08$ and $1.11(6 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.2 \mathrm{~Hz}) ; 1.14$ and $1.15(3 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.2 \mathrm{~Hz}) ; 1.17-1.26$ and $1.17-1.26(3 \mathrm{H}, 2 \mathrm{~m}$, $1: 1)$; $1.59-1.65$ and $1.59-1.65(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 1.75-1.84$ and $1.75-$ $1.84(4 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 1.85-1.95$ and $1.85-1.95(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 1.96-$ 2.05 and $1.96-2.05(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1)$; 3.21 and $3.21(1 \mathrm{H}, 2 \mathrm{br} \mathrm{s}, 1: 1)$; 3.61 and $3.62(3 \mathrm{H}, 2 \mathrm{~s}, 1: 1)$; 3.63-3.72 and $3.63-3.72(2 \mathrm{H}, 2 \mathrm{~m}, 1: 1)$; 4.53 and $4.53(1 \mathrm{H}, 2$ quintets, $1: 1, J=7.3 \mathrm{~Hz}) ; 6.01$ and $6.06(1 \mathrm{H}, 2 \mathrm{~d}$, $1: 1, J=7.3 \mathrm{~Hz}) ; 6.76-6.84$ and $6.76-6.84(2 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 7.03$ and $7.09(1 \mathrm{H}, 2 \mathrm{dd}, 1: 1, J=7.6,1.7 \mathrm{~Hz}) ; 7.39-7.44$ and $7.39-7.44(1 \mathrm{H}$, $\mathrm{m})$; 8.14 and $8.14(1 \mathrm{H}, 2 \mathrm{~s}, 1: 1) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.4$, 18.4, 22.6, 22.7, 23.0, 23.0, 25.1, 25.1, 25.5, 25.5, 25.5, 25.5, 32.9, 33.0, $33.4,33.4,43.9,44.0,47.8,47.9,52.3,52.4,58.3,58.4,111.8,112.0$, 112.7, 112.7, 115.8, 115.9, 117.1, 117.3, 131.0, 131.1, 132.0, 132.0, 137.5, 137.6, 141.3, 141.3, 145.9, 146.1, 162.2, 162.2, 173.1, 173.2. m / z $(E S I)=413\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: $413.2543\left(\mathrm{MH}^{+}\right)$. $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires: $m / z=413.2547$. (Found: C, 67.02; H, 8.11; $\mathrm{N}, 13.61 . \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires: C, 66.96; $\mathrm{H}, 7.82$; $\left.\mathrm{N}, 13.58.\right)$; $\nu_{\max }$ (ATR) 3394, 3320, 2931, 2857, 1744 ($\mathrm{C}=\mathrm{O}$), 1652 ($\mathrm{C}=\mathrm{O}$), 1540, 1514, 1170, $747 \mathrm{~cm}^{-1}$.
7.8.2. Methyl (S)-\{1-cyclohexyl-5-[2-(isobutylamino)phenyl]-1H-pyrazole-4-carbonyl\}-alaninate (15b). Prepared from 12b (400 mg , 1 mmol) and isobutyraldehyde ($128 \mu \mathrm{~L}, 1.4 \mathrm{mmol}$). Yield: 0.260 g (61%) of white solid; $\mathrm{mp} 107-110{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{22}+17.6(c=0.50$, $\mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.81$ and $0.81(6 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J$ $=6.8 \mathrm{~Hz}) ; 1.09$ and $1.11(3 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=5.3 \mathrm{~Hz}) ; 1.12-1.22$ and $1.12-1.22(3 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 1.54-1.61$ and $1.54-1.61(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1)$; $1.68-1.83$ and $1.68-1.83(5 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 1.84-2.02$ and $1.84-2.02$ $(2 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 2.82-2.92$ and $2.82-2.92(2 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 3.48-3.56$ and $3.48-3.56(1 \mathrm{H}, 2$ br s, 1:1); 3.57 and $3.57(3 \mathrm{H}, 2 \mathrm{~s}, 1: 1)$; 3.633.73 and $3.63-3.73(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 4.48$ and $4.49(1 \mathrm{H}, 2$ quintets, $1: 1$, $J=7.2 \mathrm{~Hz}) ; 5.98$ and $6.05(1 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.3 \mathrm{~Hz}) ; 6.70-6.83$ and $6.70-6.83(2 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 6.99$ and $7.05(1 \mathrm{H}, 2 \mathrm{dd}, 1: 1, J=7.6,1.7$ $\mathrm{Hz})$; 7.34-7.40 and 7.34-7.40 $(1 \mathrm{H}, \mathrm{m})$; 8.09 and $8.09(1 \mathrm{H}, 2 \mathrm{~s}, 1: 1)$. ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.2,18.4,20.2,20.3,20.3,20.3,25.0$, 25.0, 25.4, 25.4, 25.4, 25.4, 27.8, 27.8, 32.8, 32.8, 33.3, 33.3, 47.7, 47.7, 51.2, 51.2, 52.2, 52.2, 58.2, 58.2, 111.0, 111.3, 112.4, 112.4, 115.7, 115.8, 117.1, 117.2, 130.6, 130.7, 131.9, 131.9, 137.4, 137.5, 141.0, $141.0,146.8,147.0,162.0,162.0,172.9,173.0 . \mathrm{m} / z(\mathrm{ESI})=427$ $\left(\mathrm{MH}^{+}\right) . m / z$ (HRMS) Found: $427.2697\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires: $m / z=427.2704$. (Found: $\mathrm{C}, 66.65 ; \mathrm{H}, 8.03 ; \mathrm{N}, 12.81$. $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot 1 / 3 \mathrm{H}_{2} \mathrm{O}$ requires: $\mathrm{C}, 66.64 ; \mathrm{H}, 8.08 ; \mathrm{N}, 12.95$.); $\nu_{\max }$ (ATR) 3399, 3321, 2932, 2854, 1747 ($\mathrm{C}=\mathrm{O}$), 1652 ($\mathrm{C}=\mathrm{O}$), 1509, 1201, 1168, $734 \mathrm{~cm}^{-1}$
7.9. Synthesis of Methyl (1-cyclohexyl-5-\{2-[(naphthalen-1-yl)methyl]amino\}-phenyl)-1H-pyrazole-4-carbonyl)-L-alaninate (15c). A mixture of amino compound $\mathbf{1 4 b}$ ($370 \mathrm{mg}, 1 \mathrm{mmol}$), EtOH $(10 \mathrm{~mL})$ and 2-naphthaldehyde $(156 \mathrm{mg}, 1 \mathrm{mmol})$ was stirred at r.t. for 120 h . The solvent was evaporated and the resulting imine was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(50 \mathrm{mg}, 1.3 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . Volatile components were evaporated in vacuo, the residue was taken up in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$, and washed with aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. The organic phases were combined, dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the filtrate was evaporated in vacuo. The residue was purified by CC (silica gel, EtOAc-hexanes, 1:1). Fractions containing the product were combined and evaporated in vacuo to give 15c. Yield: 184 mg
(36\%) of white crystals; $\mathrm{mp} 135-138{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{22}+3.3(c=0.60$, $\mathrm{MeOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.10$ and $1.18(3 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J$ $=7.1 \mathrm{~Hz}) ; 1.20-1.31$ and $1.20-1.31(3 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 1.61-1.68$ and $1.61-1.68(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 1.78-2.08$ and $1.78-2.08(6 \mathrm{H}, 2 \mathrm{~m}, 1: 1)$; 3.56 and $3.63(3 \mathrm{H}, 2 \mathrm{~s}, 1: 1) ; 3.74-3.83$ and $3.74-3.83(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1)$; 4.14 and $4.17(1 \mathrm{H}, 2 \mathrm{t}, 1: 1, J=5.8 \mathrm{~Hz}) ; 4.49$ and $4.52(2 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=$ $5.1 \mathrm{~Hz}) ; 4.55$ and $4.59(1 \mathrm{H}, 2$ quintets, $1: 1, J=7.2 \mathrm{~Hz}) ; 5.99$ and 6.08 $(1 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.2 \mathrm{~Hz}) ; 6.79$ and $6.81(1 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=9.3 \mathrm{~Hz}) ; 6.85$ and $6.88(1 \mathrm{H}, 2 \mathrm{t}, 1: 1, J=6.4 \mathrm{~Hz}) ; 7.09$ and $7.15(1 \mathrm{H}, 2 \mathrm{dd}, 1: 1, J=7.5$, $1.6 \mathrm{~Hz})$; $7.31-7.38$ and $7.31-7.38(2 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 7.42-7.49$ and $7.42-7.49(2 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 7.68$ and $7.70(1 \mathrm{H}, 2 \mathrm{~s}, 1: 1) ; 7.75$ and 7.75 $(1 \mathrm{H}, 2 \mathrm{br} \mathrm{d}, 1: 1, J=7.6 \mathrm{~Hz}) ; 7.78$ and $7.78(1 \mathrm{H}, 2 \mathrm{dd}, 1: 1, J=8.5,2.8$ $\mathrm{Hz}) ; 7.81$ and $7.81(1 \mathrm{H}, 2 \mathrm{br} \mathrm{d}, 1: 1, J=7.9 \mathrm{~Hz}) ; 8.15$ and $8.15(1 \mathrm{H}, 2 \mathrm{~s}$, 1:1). ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.2,18.4,25.0,25.4,25.5,25.5$, 33.0, 33.3, 47.7, 47.8, 47.8, 47.8, 52.2, 52.3, 58.3, 58.3, 111.7, 111.9, 112.9, 113.0, 115.8, 115.9, 117.8, 117.9, 125.0, 125.1, 125.5, 125.6, $125.8,125.9,126.2,126.3,127.6,127.6,127.7,127.7,128.5,128.5$, 130.6, 130.7, 131.9, 131.9, 132.7, 132.8, 133.4, 133.4, 136.1, 136.2, 137.4, 137.4, 141.0, 141.1, 146.3, 146.6, 162.0, 162.1, 173.0, 173.1. m/z $(E S I)=511\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: $511.2701\left(\mathrm{MH}^{+}\right)$. $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires: $m / z=511.2704$. (Found: C, $73.23 ; \mathrm{H}, 6.58$; $\mathrm{N}, 10.98 . \mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires: C, 72.92; $\mathrm{H}, 6.71 ; \mathrm{N}, 10.97$.); $\nu_{\text {max }}$ (ATR) 3387, 3342, 2933, 2856, 1747 ($\mathrm{C}=\mathrm{O}$), 1643 ($\mathrm{C}=\mathrm{O}$), 1505, $826,747 \mathrm{~cm}^{-1}$.
7.10. Synthesis of Methyl (S)-(5-(2-acetylaminophenyl)-1-phenyl-1H-pyrazole-4-carbonyl)alaninate (16a). A mixture of nitro compound 12a $(0.197 \mathrm{~g}, 0.5 \mathrm{mmol})$, $\mathrm{AcOH}(10 \mathrm{~mL}), \mathrm{Ac}_{2} \mathrm{O}(5$ $\mathrm{mL})$, and $10 \% \mathrm{Pd}-\mathrm{C}(20 \mathrm{mg})$ was hydrogenated under 3 bar of H_{2} at r.t. for 4 h . Then, hydrogenation was stopped, $\mathrm{MeOH}(10 \mathrm{~mL})$ was added, and the mixture was left at r.t. for 2 h to solvolize excess $\mathrm{Ac}_{2} \mathrm{O}$. The catalyst was removed by filtration through a glass-sintered funnel and the filtrate was evaporated in vacuo. The residue was purified by FC (EtOAc/hexanes, 1:1). Fractions containing the product were combined and evaporated in vacuo to give 16a. Yield: 0.153 g (75%) of yellowish solid; $\mathrm{mp} 86-91{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{22}-19.4(c=0.20, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.35$ and $1.38(3 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.2 \mathrm{~Hz})$; 2.02 and $2.03(3 \mathrm{H}, 2 \mathrm{~s}, 1: 1) ; 3.74$ and $3.76(3 \mathrm{H}, 2 \mathrm{~s}, 1: 1) ; 4.63$ and 4.65 $(1 \mathrm{H}, 2$ quintets, $1: 1, J=7.2 \mathrm{~Hz}) ; 6.29$ and $6.56(1 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.0$ $\mathrm{Hz}) ; 6.96(1 \mathrm{H}$, br $\mathrm{t}, J=6.4 \mathrm{~Hz}) ; 7.08(1 \mathrm{H}, \mathrm{br} q, J=7.9 \mathrm{~Hz}) ; 7.14-$ $7.21(1 \mathrm{H}, \mathrm{m}) ; 7.22-7.34(4 \mathrm{H}, \mathrm{m}) ; 7.39-7.46(1 \mathrm{H}, \mathrm{m}) ; 7.73$ and 7.79 $(1 \mathrm{H}, 2 \mathrm{br} \mathrm{d}, J=8.0 \mathrm{~Hz}) ; 8.10(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; 8.62$ and $8.86(1 \mathrm{H}, 2 \mathrm{~s}, 1: 1)$. ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.0,18.2,23.8,24.0,48.1,48.3,52.6$, $52.7,117.6,117.8,123.1,123.9,124.7,124.8,125.5,125.9,126.0$, 126.7, 128.0, 128.0, 129.0, 129.0, 130.7, 130.8, 131.3, 131.4, 137.1, 137.2, 138.9, 138.9, 139.3, 139.7, 139.7, 140.1, 163.2, 163.3, 169.1, 169.3, 173.2, 173.6. $m / z(\mathrm{ESI})=407\left(\mathrm{MH}^{+}\right) . m / z(\mathrm{HRMS})$ Found: 407.1723 $\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires: $m / z=407.1719$. (Found: C, 64.09; $\mathrm{H}, 5.22$; $\mathrm{N}, 13.07 . \mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot 1 / 3 \mathrm{AcOH}$ requires: $\mathrm{C}, 63.84$; H, 5.52; N, 13.14.); $\nu_{\max }(\mathrm{KBr}) 3467,1741(\mathrm{C}=\mathrm{O}), 1639(\mathrm{C}=\mathrm{O})$, 1586, 1500, 1390, 1307, $764 \mathrm{~cm}^{-1}$.
7.11. Synthesis of Methyl (S)-[5-(2-benzamidophenyl)-1-cyclohexyl-1H-pyrazole-4-carbonyl]alaninate (16b). Benzoyl chloride ($64 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$) was added to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of aniline $\mathbf{1 4 b}(185 \mathrm{mg}, 0.5 \mathrm{mmol})$ in anh. pyridine $(10 \mathrm{~mL})$ and the mixture was stirred at r.t. for 24 h . Volatile components were evaporated in vacuo and the residue was purified by DVFC (silica gel, EtOAc/hexanes, 1:2). Fractions containing the product were combined and evaporated in vacuo to give $\mathbf{1 6 b}$. Yield: 0.170 g (72%) of white crystals; $\mathrm{mp} 77-83{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{22}+6.8(c=3.8, \mathrm{MeOH})$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.09-1.24$ and $1.09-1.24(3 \mathrm{H}, 2 \mathrm{~m}$, $1: 1)$; 1.35 and $1.38(3 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.2 \mathrm{~Hz}) ; 1.51-1.64$ and $1.51-$ $1.64(2 \mathrm{H}, 2 \mathrm{~m}, 1: 1)$; $1.65-1.72$ and $1.65-1.72(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 1.74-$ 1.87 and $1.74-1.87(2 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 1.91-2.04$ and $1.91-2.04(2 \mathrm{H}, 2 \mathrm{~m}$, $1: 1) ; 3.69$ and $3.74(3 \mathrm{H}, 2 \mathrm{~s}, 1: 1) ; 3.75-3.84$ and $3.75-3.84(1 \mathrm{H}, 2 \mathrm{~m}$, $1: 1)$; 4.62 and $4.65(1 \mathrm{H}, 2$ quintets, $1: 1, J=7.2 \mathrm{~Hz}) ; 6.23$ and 6.27 $(1 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.2 \mathrm{~Hz}) ; 7.22-7.25$ and $7.22-7.25(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1)$; $7.31-7.36$ and $7.31-7.36(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 7.37-7.43$ and $7.37-7.43$ $(2 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 7.46-7.50$ and $7.46-7.50(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 7.57-7.62$ and $7.57-7.62(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 7.69-7.76$ and $7.69-7.76(2 \mathrm{H}, 2 \mathrm{~m}$, $1: 1) ; 7.93$ and $7.96(1 \mathrm{H}, 2 \mathrm{~s}, 1: 1) ; 8.10$ and $8.19(1 \mathrm{H}, 2 \mathrm{br} \mathrm{d}, 1: 1, J=$
$8.1 \mathrm{~Hz}) ; 9.14$ and $9.27(1 \mathrm{H}, 2 \mathrm{~s}, 1: 1) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 18.4, 18.5, 25.1, 25.1, 25.4, 25.4, 25.5, 25.5, 33.1, 33.1, 33.2, 33.3, 48.2, 48.3, 52.7, 52.8, 58.6, 58.6, 115.9, 115.9, 122.1, 123.0, 125.3, 126.1, 125.3, 125.7, 127.3, 127.3, 127.3, 127.3, 128.7, 128.7, 128.8, 128.8, 130.4, 130.5, 131.2, 131.2, 131.9, 132.0, 134.2, 134.4, 137.6, 137.7, 138.4, 138.6, 139.0, 139.1, 163.5, 163.5, 165.6, 165.8, 173.4, 173.5. m/z $(E S I)=475\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: $475.2333\left(\mathrm{MH}^{+}\right)$. $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires: $m / z=475.2340$. (Found: C, 68.09; H, 6.52; $\mathrm{N}, 11.58 . \mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires: $\mathrm{C}, 68.34 ; \mathrm{H}, 6.37 ; \mathrm{N}, 11.81$); $\nu_{\max }$ (ATR) 3272, 2932, 2856, 1743 ($\mathrm{C}=\mathrm{O}$), $1637(\mathrm{C}=\mathrm{O}), 1508,1205$, $760,707 \mathrm{~cm}^{-1}$.
7.12. Synthesis of Methyl (S)-(1-cyclohexyl-5-\{2-[3-(2-ethoxy-2-oxoethyl)ureido]-phenyl\}-1H-pyrazole-4-carbonyl)alaninate (19). Ethyl isocyanatoacetate (17) ($400 \mu \mathrm{~L}, 3.6 \mathrm{mmol}$) was added to a solution of aniline $\mathbf{1 4 b}(185 \mathrm{mg}, 0.5 \mathrm{mmol})$ in anh. dichloromethane $(10 \mathrm{~mL})$ and the mixture was stirred at r.t. for 24 h . Volatile components were evaporated in vacuo to give 19. Yield: 0.180 $\mathrm{g}(72 \%)$ of white crystals; $[\alpha]_{\mathrm{D}}^{22}-5.2(c=0.95, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.96-1.13$ and $0.96-1.13(3 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 1.18$ and $1.18(3 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.1 \mathrm{~Hz}) ; 1.26$ and $1.29(3 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.1$ $\mathrm{Hz}) ; 1.50-1.57$ and $1.50-1.57(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 1.57-1.74$ and $1.57-$ $1.74(4 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 1.76-1.89$ and $1.76-1.89(2 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 3.50-$ 3.57 and $3.50-3.57(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 3.58$ and $3.58(3 \mathrm{H}, 2 \mathrm{~s}, 1: 1) ; 3.77$ and $3.80(2 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=5.5 \mathrm{~Hz}) ; 4.08$ and $4.08(2 \mathrm{H}, 2 \mathrm{q}, 1: 1, J=7.1$ $\mathrm{Hz}) ; 4.34$ and $4.35(1 \mathrm{H}, 2$ quintets, $1: 1, J=7.2 \mathrm{~Hz}) ; 7.07$ and 7.09 $(1 \mathrm{H}, 2 \mathrm{t}, 1: 1, J=6.0 \mathrm{~Hz}) ; 7.04-7.09$ and $7.04-7.09(2 \mathrm{H}, 2 \mathrm{~m}, 1: 1)$; $7.36-7.42$ and $7.36-7.42(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 7.51$ and $7.60(1 \mathrm{H}, 2 \mathrm{~s}, 1: 1)$; $7.89-7.92$ and $7.89-7.92(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 7.92$ and $8.09(1 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J$ $=7.2 \mathrm{~Hz}) ; 8.14$ and $8.16(1 \mathrm{H}, 2 \mathrm{~s}, 1: 1) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 14.1,14.1,17.0,17.1,24.9,24.9,32.0,32.2,32.9,33.0,41.2,41.2$, 47.3, 47.4, 51.8, 51.8, 57.3, 57.3, 60.3, 60.3, 115.8, 115.9, 120.3, 120.5, 122.0, 122.0, 122.3, 122.4, 129.5, 129.6, 130.7, 131.1, 138.2, 138.4, 138.4, 138.5, 139.4, 139.6, 155.3, 155.3, 161.7, 161.8, 170.6, 170.7, 173.1, 173.2. $m / z(\mathrm{ESI})=500\left(\mathrm{MH}^{+}\right) . m / z(\mathrm{HRMS})$ Found: $500.2498\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{6}$ requires: $m / z=500.2504 . \nu_{\text {max }}$ (ATR) 3401, 3319, 2933, 2858, 1747 ($\mathrm{C=O}$), 1704 ($\mathrm{C}=\mathrm{O}$), 1633 ($\mathrm{C}=\mathrm{O}$), 1586, 1542, 1197, $767 \mathrm{~cm}^{-1}$.
7.13. Synthesis of Methyl (S)-\{5-[2-(\{(S,Z)-4-[(tert-butoxycarbonyl)amino]-3-oxopent-1-en-1-yl\}amino)phenyl]-1-cyclohexyl-1H-pyrazole-4-carbonyl\}alaninate (20). A solution of aniline $\mathbf{1 4 b}(370 \mathrm{mg}, 1 \mathrm{mmol})$ in anh. dichloromethane $(5 \mathrm{~mL})$ was added to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of tert-butyl (S)-(3-oxopent-4-yn-2yl)carbamate (18) in anh. dichloromethane $(5 \mathrm{~mL})$ and the mixture was stirred at r.t. for 16 h . Volatile components were evaporated in vacuo and the residue was purified by CC (silica gel, EtOAc/hexanes, $3: 2$). Fractions containing the product were combined and evaporated in vacuo to give 20. Yield: $0.420 \mathrm{~g}(74 \%)$ of white crystals; mp 91-95 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{22}+20.4(c=1.05, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.07-1.24$ and $1.07-1.24\left(3 \mathrm{H}, 2 \mathrm{~m}, 1: 1,3 \mathrm{H}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right) ; 1.26$ and 1.26 $(3 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.0 \mathrm{~Hz}) ; 1.27$ and $1.30(3 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.1 \mathrm{~Hz}) ; 1.45$ and $1.45(9 \mathrm{H}, 2 \mathrm{~s}, 1: 1) ; 1.59-1.66$ and $1.59-1.66(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1)$; $1.72-1.88$ and $1.72-1.88(4 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 1.90-2.06$ and $1.90-2.06$ $(2 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 3.60-3.67$ and $3.60-3.67(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 3.67$ and 3.69 $(3 \mathrm{H}, 2 \mathrm{~s}, 1: 1) ; 4.24$ and $4.24(1 \mathrm{H}, 2$ quintets, $1: 1, J=7.0 \mathrm{~Hz}) ; 4.59$ and $4.62(1 \mathrm{H}, 2$ quintets, $1: 1, J=7.0 \mathrm{~Hz})$; 5.29 and $5.30(1 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=$ $7.8 \mathrm{~Hz}) ; 5.41$ and $5.44(1 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=7.2 \mathrm{~Hz}) ; 6.08$ and $6.08(1 \mathrm{H}$, $2 \mathrm{~d}, 1: 1, J=5.5 \mathrm{~Hz}) ; 7.21-7.35$ and $7.21-7.35(4 \mathrm{H}, 2 \mathrm{~m}, 1: 1)$; $7.53-$ 7.59 and $7.53-7.59(1 \mathrm{H}, 2 \mathrm{~m}, 1: 1) ; 8.12$ and $8.15(1 \mathrm{H}, 2 \mathrm{~s}, 1: 1) ; 11.04$ and $11.07(1 \mathrm{H}, 2 \mathrm{~d}, 1: 1, J=8.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 18.8, 18.8, 19.4, 19.6, 25.1, 25.1, 25.5, 25.5, 25.6, 25.6, 28.5, 28.5, 32.5, $32.5,33.4,33.4,47.9,47.9,52.5,52.5,53.8,54.0,58.7,58.8,79.4,79.4$, $95.4,95.7,115.1,115.4,116.3,116.4,118.3,118.5,123.9,124.0,131.5$, 131.7, 131.7, 131.8, 137.1, 137.4, 139.7, 139.9, 139.8, 140.1, 143.3, 143.9, 155.3, 155.4, 161.9, 162.0, 173.5, 173.5, 198.4, 198.6. m / z (ESI) $=568\left(\mathrm{MH}^{+}\right) . m / z($ HRMS $)$ Found: $568.3122\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{5} \mathrm{O}_{6}$ requires: $m / z=568.3130$. (Found: C, 63.22; H, 7.44; N, 12.28 . $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{6}$ requires: C, 63.47; H, 7.28; N, 12.34.); $\nu_{\max }$ (ATR) 3304, 2932, 2857, 1720 ($\mathrm{C}=\mathrm{O}$), 1627 ($\mathrm{C}=\mathrm{O}$), 1585, 1454, 1278, 1161, $753 \mathrm{~cm}^{-1}$.
7.14. Synthesis of N-Methyl 5-(2-nitrophenyl)-1-phenyl-1H-pyrazole-4-carboxamides 21a,b. CDI ($0.17 \mathrm{~g}, 1.05 \mathrm{mmol}$) was added to a solution of carboxylic acid 2a (1 mmol) in anh. MeCN (5 mL) and the mixture was stirred at r.t. for 2 h . Then amine (2 mmol) was added and stirring at r.t. was continued for 40 h . Volatile components were evaporated in vacuo and the residue was purified by DVFC (silica gel, EtOAc-hexanes). Fractions containing the product were combined and evaporated in vacuo to give 21.
7.14.1. N-Methyl-5-(2-nitrophenyl)-1-phenyl-1H-pyrazole-4-carboxamide (21a). Prepared from 2a (310 mg , 1 mmol) and MeNH_{2} (2 M in $\mathrm{MeOH}, 1 \mathrm{~mL}, 2 \mathrm{mmol}$), DVFC (EtOAc/hexanes, 1:2). Yield: $0.138 \mathrm{~g}(43 \%)$ of white solid; $\mathrm{mp} 214-216{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.82(3 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}) ; 5.95(1 \mathrm{H}, \mathrm{br} \mathrm{q}, J=3.9 \mathrm{~Hz}) ; 7.25-$ $7.31(6 \mathrm{H}, \mathrm{m}) ; 7.52-7.58(2 \mathrm{H}, \mathrm{m}) ; 7.93(1 \mathrm{H}, \mathrm{s}) ; 8.08-8.12(1 \mathrm{H}, \mathrm{m})$. ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.2,116.8,124.6,125.0,125.2,128.3$, 129.1, 130.3, 132.9, 133.0, 138.5, 138.7, 140.2, 149.1, 162.7. m / z (ESI) $=323\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: $323.1139\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires: $m / z=323.1139$. (Found: $\mathrm{C}, 63.39 ; \mathrm{H}, 4.30 ; \mathrm{N}, 17.15$. $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires: C, 63.35; H, 4.38; $\mathrm{N}, 17.38$.); $\nu_{\text {max }}$ (ATR) 3306, 3098, 1621 ($\mathrm{C}=\mathrm{O}$), 1573, 1525, 1501, 1342, $961,767 \mathrm{~cm}^{-1}$.
7.14.2. N,N-Dimethyl-5-(2-nitrophenyl)-1-phenyl-1H-pyrazole-4carboxamide (21b). Prepared from 2a ($310 \mathrm{mg}, 1 \mathrm{mmol}$) and $\mathrm{Me}_{2} \mathrm{NH}(2 \mathrm{M}$ in $\mathrm{MeOH}, 1 \mathrm{~mL}, 2 \mathrm{mmol}$), DVFC (EtOAc/hexanes, 1:3). Yield: $0.172 \mathrm{~g}(51 \%)$ of white solid; mp $159-163{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.96$ and $3.08(6 \mathrm{H}, 2 \mathrm{br} \mathrm{s}, 1: 1) ; 7.20-7.25(2 \mathrm{H}$, m), $7.27-7.32(3 \mathrm{H}, \mathrm{m}) ; 7.46(1 \mathrm{H}, \mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}) ; 7.54(1 \mathrm{H}, \mathrm{td}, J$ $=7.8,1.6 \mathrm{~Hz}) ; 7.60(1 \mathrm{H}, \mathrm{td}, J=7.5,1.4 \mathrm{~Hz}) ; 7.86(1 \mathrm{H}, \mathrm{s}) ; 7.99(1 \mathrm{H}$, dd, $J=8.1,1.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 35.3,39.0,117.6$, 124.7, 124.8, 124.9, 128.2, 129.1, 130.3, 133.1, 133.1, 138.7, 138.8, 139.2, 148.8, 164.4. $m / z($ ESI $)=337\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: 337.1294 $\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires: $m / z=337.1295$. (Found: C , 63.85; H, 4.76; $\mathrm{N}, 16.11 . \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot 1 / 8 \mathrm{H}_{2} \mathrm{O}$ requires: $\mathrm{C}, 63.85$; H , 4.84; N, 16.55.); $\nu_{\max }(\mathrm{ATR}) 2926,1619(\mathrm{C}=\mathrm{O}), 1525,1498,1345$, $774,763 \mathrm{~cm}^{-1}$.
7.15. Synthesis of (S)-1-Phenylethyl 5-(2-nitrophenyl)-1-phenyl-1H-pyrazole-4-carboxylate (22). Carboxylic acid 2a (155 $\mathrm{mg}, 0.5 \mathrm{mmol}$) was dissolved in thionyl chloride $(4 \mathrm{~mL})$, the mixture was heated under reflux for 4 h , and the volatile components were evaporated in vacuo. The residue was dissolved in anh. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 $\mathrm{mL}),(S)$-(-)-1-phenylethanol ($60 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) was added, and stirring at r.t. was continued for 24 h . The reaction mixture was concentrated in vacuo and the residue was purified by DVFC (silica gel, EtOAc/hexanes, 1:3). Fractions containing the product were combined and evaporated in vacuo to give 22. Yield: $77 \mathrm{mg}(37 \%)$ of colorless oil; $[\alpha]_{\mathrm{D}}^{22}+66.0(c=0.15, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.42$ and $1.43(3 \mathrm{H}, 2 \mathrm{~d}, 53: 47, J=6.6 \mathrm{~Hz}) ; 5.87$ and 5.92 $(1 \mathrm{H}, 2 \mathrm{q}, 47: 53, J=6.7 \mathrm{~Hz})$; $6.99-7.04$ and $6.99-7.04(1 \mathrm{H}, 2 \mathrm{~m})$; $7.18-7.33$ and $7.18-7.33(10 \mathrm{H}, 2 \mathrm{~m})$; $7.51-7.59$ and $7.51-7.59(2 \mathrm{H}$, $2 \mathrm{~m})$; $8.08-8.15$ and $8.08-8.15(1 \mathrm{H}, 2 \mathrm{~m}) ; 8.22$ and $8.23(1 \mathrm{H}, 2 \mathrm{~s}$, 46:54). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 21.8,22.1,72.3,72.5,124.7,124.7,125.0,125.0,125.0,125.0,125.9$, 125.9, 125.9, 125.9, 127.7, 127.8, 128.3, 128.3, 128.4, 128.4, 128.5, 128.5, 129.1, 129.1, 129.1, 129.1, 130.4, 130.4, 132.6, 132.8, 133.0, 133.0, 138.7, 138.7, 141.2, 141.4, 142.3, 142.6, 161.6, 161.7. m / z (ESI) $=414\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: $414.1444\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: $m / z=414.1448 . \nu_{\max }(\mathrm{ATR}) 2929,1708(\mathrm{C}=\mathrm{O})$, 1525, 1498, 1347, 1223, 1135, 1007, 960, 754, $693 \mathrm{~cm}^{-1}$.
7.16. General Procedure for the Synthesis of 1-Substituted Ethyl 5-phenyl-1H-pyrazole-4-carboxylates 23a-c. A mixture of $\mathbf{8 b}(0.96 \mathrm{~g}, 5 \mathrm{mmol})$, anh. toluene $(15 \mathrm{~mL})$, and DMFDMA (0.8 mL , 5.3 mmol) was stirred under reflux for 4 h and volatile components were evaporated in vacuo. The residue was dissolved in 1-butanol (15 $\mathrm{mL})$, hydrazine derivative $\mathbf{1 0 a}, \mathbf{e}, \mathbf{m}(5.5 \mathrm{mmol})$ and 37% hydrochloric acid (11 drops) were added, and the mixture was stirred under reflux for 16 h . Volatile components were evaporated in vacuo and the residue was purified by FC (EtOAc/hexanes). Fractions containing the product were combined and evaporated in vacuo to give the crude products 23a-c.
7.16.1. Ethyl 1,5-diphenyl-1H-pyrazole-4-carboxylate (23a). Prepared from 8b ($0.96 \mathrm{~g}, 5 \mathrm{mmol}$), DMFDMA ($0.8 \mathrm{~mL}, 5.3$
mmol), and phenylhydrazine hydrochloride 10a ($0.80 \mathrm{~g}, 5.5 \mathrm{mmol}$), FC (EtOAc/hexanes, 1:2). Yield: 1.32 g (90\%) of brownish crystals. Physical and spectral data of pyrazole 23a were in agreement with the literature data. ${ }^{35}$
7.16.2. Ethyl 1-(2-chlorophenyl)-5-phenyl-1H-pyrazole-4-carboxylate (23b). Prepared from $\mathbf{8 b}(0.96 \mathrm{~g}, 5 \mathrm{mmol})$, DMFDMA $(0.8 \mathrm{~mL}$, $5.3 \mathrm{mmol})$, and 2-chlorophenylhydrazine hydrochloride $\mathbf{1 0 e}(0.98 \mathrm{~g}$, 5.5 mmol), FC (EtOAc/hexanes, 1:2). Yield: 1.50 g (92\%) of brownish oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz})$; $4.22(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}) ; 7.22-7.33(8 \mathrm{H}, \mathrm{m}) ; 7.36-7.41(1 \mathrm{H}, \mathrm{m}), 8.23$ $(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.2,60.2,113.1,127.3$, 127.7, 128.1, 129.2, 130.0, 130.2, 130.3, 130.6, 132.4, 137.0, 142.7, 147.5, 162.9. $m / z(\mathrm{ESI})=327,329\left(\mathrm{MH}^{+}\right) . m / z(\mathrm{HRMS})$ Found: $327.0890\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}_{2}$ requires: $m / z=327.0895 . \nu_{\max }$ (ATR) 3063, 2981, 1708 (C=O), 1555, 1499, 1444, 1224, 1127, $760,695 \mathrm{~cm}^{-1}$.
7.16.3. Ethyl 1-(2-nitrophenyl)-5-phenyl-1H-pyrazole-4-carboxylate (23c). Prepared from $8 \mathbf{b}(0.96 \mathrm{~g}, 5 \mathrm{mmol})$, DMFDMA (0.8 mL , $5.3 \mathrm{mmol})$, 2-nitrophenylhydrazine hydrochloride $10 \mathrm{~m}(0.84 \mathrm{~g}, 5.5$ mmol), and 37% aq. HCl (11 drops), FC (EtOAc/hexanes, 1:2). Yield: $1.32 \mathrm{~g}(78 \%)$ of brown oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23$ $(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}) ; 4.23(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}) ; 7.24(1 \mathrm{H}, \mathrm{dd}, J=7.6,1.7$ $\mathrm{Hz}) ; 7.28-7.37(5 \mathrm{H}, \mathrm{m}) ; 7.48-7.56(2 \mathrm{H}, \mathrm{m}) ; 7.91(1 \mathrm{H}, \mathrm{dd}, J=7.8$, $1.8 \mathrm{~Hz}) ; 8.20(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.2,60.3$, 114.1, 125.2, 127.6, 128.1, 129.5, 129.7, 129.7, 130.4, 132.7, 133.2, 143.5, 145.9, 146.8, 162.6. $m / z(E S I)=338\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: $338.1143\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: $m / z=338.1135$. $\nu_{\max }$ (ATR) 3386, 2987, 2781, 1714 ($\mathrm{C}=\mathrm{O}$), 1524, 1451, 1350, 782, 771, 749, $65 \mathrm{~cm}^{-1}$.
7.17. General Procedure for the Synthesis of 1 -Substituted 5-Phenyl-1H-pyrazole-4-carboxylic acids 24a-c. A mixture of the ester $23(3 \mathrm{mmol})$, methanol $(30 \mathrm{~mL})$, and 2 M aq. NaOH (6.6 $\mathrm{mL}, 13.2 \mathrm{mmol}$) was stirred at $50{ }^{\circ} \mathrm{C}$ for 24 h . Methanol was evaporated in vacuo ($40 \mathrm{mbar}, 40^{\circ} \mathrm{C}$) and the aqueous solution was acidified with 1 M aq. HCl to $\mathrm{pH} \sim 1$ and the product 24 was either collected by filtration and washed with water $(2 \times 5 \mathrm{~mL})$ or taken up in EtOAc $(50 \mathrm{~mL})$ when oily acid was formed. The organic phase was dried for 20 min over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the filtrate was evaporated in vacuo to give $\mathbf{2 4 a} \mathbf{- c}$.
7.17.1. 1,5-Diphenyl-1H-pyrazole-4-carboxylic acid (24a). Prepared from 23a ($877 \mathrm{mg}, 3 \mathrm{mmol}$). Yield: 753 mg (95%) of brownish crystals. Physical and spectral data of carboxylic acid 24a were in agreement with the literature data. ${ }^{36}$
7.17.2. 1-(2-Chlorophenyl)-5-phenyl-1H-pyrazole-4-carboxylic acid (24b). Prepared from 23b $(980 \mathrm{mg}, 3 \mathrm{mmol})$. Yield: 788 mg (88%) of brownish oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22-7.33$ $(8 \mathrm{H}, \mathrm{m}) ; 7.38(1 \mathrm{H}, \mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}) ; 8.26(1 \mathrm{H}, \mathrm{s}) ; 8.83(1 \mathrm{H}, \mathrm{br} \mathrm{s})$. ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 112.1,127.3,127.6,127.8,129.3$, 129.9, 130.1, 130.3, 130.7, 132.3, 136.7, 143.5, 148.1, 168.1. m / z (ESI) $=299,301\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: $299.0583\left(\mathrm{MH}^{+}\right)$. $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClN}_{2} \mathrm{O}_{2}$ requires: $m / z=299.0582 . \nu_{\max }$ (ATR) 2914, 1721 $(\mathrm{C}=\mathrm{O}), 1550,1502,1224,1202,1137,778,763,696 \mathrm{~cm}^{-1}$.
7.17.3. 1-(2-Nitrophenyl)-5-phenyl-1H-pyrazole-4-carboxylic acid (24c). Prepared from $23 \mathrm{c}(1.01 \mathrm{~g}, 3 \mathrm{mmol})$. Yield: $751 \mathrm{mg}(81 \%)$ of brownish oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(1 \mathrm{H}, \mathrm{dd}, J=7.5,1.7$ $\mathrm{Hz}) ; 7.25-7.32(4 \mathrm{H}, \mathrm{m}) ; 7.33-7.38(1 \mathrm{H}, \mathrm{m}) ; 7.48-7.56(2 \mathrm{H}, \mathrm{m})$; $7.91(1 \mathrm{H}, \mathrm{dd}, J=7.7,1.8 \mathrm{~Hz}) ; 8.24(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 113.0,125.2,127.1,128.2,129.7,129.7,129.9,130.3,132.5$, 133.3, 144.2, 145.7, 147.6, 167.9. $\mathrm{m} / z(\mathrm{ESI})=310\left(\mathrm{MH}^{+}\right) . \mathrm{m} / z$ (HRMS) Found: $310.0826\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: $\mathrm{m} / \mathrm{z}=$ 310.0822. $\nu_{\max }$ (ATR) 3065, 1681 ($\mathrm{C}=\mathrm{O}$), 1530, 1500, 1349, 1243, $778,726,695 \mathrm{~cm}^{-1}$.
7.18. General Procedure for the Synthesis of Methyl 1Substituted (S)-(5-Phenyl-1H-pyrazole-4-carbonyl)alaninates 25a-c. CDI $(0.34 \mathrm{~g}, 2.1 \mathrm{mmol})$ was added to a solution of carboxylic acid $24 \mathrm{a}-\mathrm{c}(2 \mathrm{mmol})$ in anh. $\mathrm{MeCN}(10 \mathrm{~mL})$ and the mixture was stirred at r.t. for 2 h . Then, N-methylmorpholine $(0.22 \mathrm{~mL})$ and Lalanine methyl ester hydrochloride (11a) ($0.31 \mathrm{~g}, 2.2 \mathrm{mmol}$) were added and stirring at r.t. was continued for 40 h . Volatile components were evaporated in vacuo, the residue was taken up in EtOAc (30 mL),
and washed with $1 \mathrm{M} \mathrm{HCl}(3 \times 20 \mathrm{~mL})$, aq. $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$, and brine $(20 \mathrm{~mL})$. The organic phases were combined, dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the filtrate was evaporated in vacuo. The residue was purified by DVFC (silica gel, EtOAc-hexanes). Fractions containing the product were combined and evaporated in vacuo to give $25 \mathrm{a}-\mathrm{c}$.
7.18.1. Methyl (S)-(1,5-diphenyl-1H-pyrazole-4-carbonyl)alaninate (25a). Prepared from 24a ($0.529 \mathrm{~g}, 2 \mathrm{mmol}$) and methyl (S)-alaninate hydrochloride (11a) ($0.31 \mathrm{~g}, 2.2 \mathrm{mmol}$), DVFC (EtOAc-hexanes, 1:1). Yield: 0.538 g (77\%) of white crystals; mp $109-111{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{22}-18.0(c=0.50, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.26(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}) ; 3.68(3 \mathrm{H}, \mathrm{s}) ; 4.64(1 \mathrm{H}$, quintet, $J=$ $7.2 \mathrm{~Hz}) ; 5.94(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}) ; 7.18-7.22(2 \mathrm{H}, \mathrm{m}) ; 7.25-7.30(3 \mathrm{H}$, $\mathrm{m}) ; 7.33-7.37(2 \mathrm{H}, \mathrm{m}) ; 7.41-7.48(3 \mathrm{H}, \mathrm{m}) ; 8.20(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.3,47.9,52.4,117.3,125.1,127.9,128.7$, 128.8, 129.1, 129.8, 130.4, 139.1, 141.5, 141.8, 162.0, 173.2. m / z (ESI) $=350\left(\mathrm{MH}^{+}\right) . m / z$ (HRMS) Found: $350.1513\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires: $m / z=350.1499$. (Found: C, 68.79; H, 5.41; N, 11.95. $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires: $\mathrm{C}, 68.75 ; \mathrm{H}, 5.48 ; \mathrm{N}, 12.03$.); $\nu_{\text {max }}$ (ATR) 3307, 1732 ($\mathrm{C}=\mathrm{O}$), 1636 ($\mathrm{C}=\mathrm{O}$), 1561, 1496, 1386, 1304, 1224, 762, 695 cm^{-1}.
7.18.2. Methyl (S)-(1-(2-chlorophenyl)-5-phenyl-1H-pyrazole-4carbonyl)alaninate (25b). Prepared from $\mathbf{2 4 b}$ ($0.597 \mathrm{~g}, 2 \mathrm{mmol}$) and methyl (S)-alaninate hydrochloride (11a) ($0.31 \mathrm{~g}, 2.2 \mathrm{mmol}$), DVFC (EtOAc-hexanes, 1:2). Yield: $0.537 \mathrm{~g}(70 \%)$ of brownish oil; $[\alpha]_{\mathrm{D}}^{22}-15.6(c=2.0, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.27$ $(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}) ; 3.68(3 \mathrm{H}, \mathrm{s}) ; 4.65(1 \mathrm{H}$, quintet, $J=7.2 \mathrm{~Hz}) ; 6.01$ $(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}) ; 7.22-7.26(1 \mathrm{H}, \mathrm{m}) ; 7.28-7.40(8 \mathrm{H}, \mathrm{m}) ; 8.23$ $(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.3,47.9,52.4,116.4,127.3$, 127.8, 128.7, 129.8, 130.0, 130.1, 130.2, 130.7, 132.5, 136.8, 141.7, 143.9, 161.9, 173.2. $m / z(E S I)=384,386\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: $384.1118\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClN}_{3} \mathrm{O}_{3}$ requires: $m / z=384.1119$. (Found: C, 60.64; H, 4.48; N, 13.98. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires: C, 60.91; H, 4.60; N, 14.21.); $\nu_{\max }$ (ATR) 3315, 2952, 1740 ($\mathrm{C}=\mathrm{O}$), 1644 ($\mathrm{C}=\mathrm{O}$), 1557, 1518, 1498, 1488, 1446, 1207, 1166, 912, 762, 727, $696 \mathrm{~cm}^{-1}$.
7.18.3. Methyl (S)-(1-(2-nitrophenyl)-5-phenyl-1H-pyrazole-4carbonyl)alaninate (25c). Prepared from 24c ($0.619 \mathrm{~g}, 2 \mathrm{mmol}$) and methyl (S)-alaninate hydrochloride (11a) $(0.31 \mathrm{~g}, 2.2 \mathrm{mmol})$, DVFC (EtOAc-hexanes, 1:2). Yield: 0.426 g (54\%) of brownish crystals; mp $154-159{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{22}-9.0\left(c=0.50\right.$, MeOH). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.29(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}) ; 3.69(3 \mathrm{H}, \mathrm{s}) ; 4.65(1 \mathrm{H}$, quintet, $J=7.2 \mathrm{~Hz}) ; 6.01(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}) ; 7.23(1 \mathrm{H}, \mathrm{dd}, J=7.3,2.0$ $\mathrm{Hz}) ; 7.36-7.46(5 \mathrm{H}, \mathrm{m}) ; 7.52(2 \mathrm{H}, \mathrm{pd}, J=7.6,1.7 \mathrm{~Hz}) ; 7.91(1 \mathrm{H}, \mathrm{dd}$, $J=7.8,1.8 \mathrm{~Hz}) ; 8.19(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.4$, 48.0, 52.4, 117.4, 125.2, 127.3, 129.1, 129.6, 129.7, 130.2, 130.3, 132.5, 133.2, 142.5, 143.3, 145.9, 161.5, 173.1. $m / z(E S I)=395\left(\mathrm{MH}^{+}\right) . m / z$ (HRMS) Found: $395.1345\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires: $\mathrm{m} / z=$ 395.1350. (Found: C, $60.64 ; \mathrm{H}, 4.48$; N, 13.98. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires: C, 60.91; H, 4.60; N, 14.21.); $\nu_{\max }$ (ATR) 3301, 1733 ($\mathrm{C}=\mathrm{O}$), 1635 $(\mathrm{C}=\mathrm{O}), 1563,1536,1361,1303,766,748,698 \mathrm{~cm}^{-1}$.

ASSOCIATED CONTENT

(5) Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.5b02467.

Crystal data. (CIF)
Copies of the NMR spectra, X-ray diffraction data, DNMR spectra, computational details, additional tables and figures. (PDF)

- AUTHOR INFORMATION

Corresponding Author

*Tel.: +386 14798 562. Fax: +386 12419 144. E-mail: jurij. svete@fkkt.uni-lj.si.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the Slovenian Research Agency for the financial support through grants P1-0179 and P1-0242.

REFERENCES

(1) Joule, J. A.; Mills, K. In Heterocyclic Chemistry, 5th ed.; WileyBlackwell, 2010; Chapters 30-33, pp 587-664.
(2) (a) Vagner, J.; Qu, H.; Hruby, V. J. Curr. Opin. Chem. Biol. 2008, 12, 292-296. (b) Robinson, J. A.; DeMarco, S.; Gombert, F.; Moehle, K.; Obrecht, D. Drug Discovery Today 2008, 13, 944-951. (c) Robinson, J. A. Acc. Chem. Res. 2008, 41, 1278-1288.
(d) Hanessian, S.; Auzzas, L. Acc. Chem. Res. 2008, 41, 1241-1251.
(e) Wells, J. A.; McClendon, C. L. Nature 2007, 450, 1001-1009.
(f) Hutchinson, E. G.; Thornton, J. M. Protein Sci. 1994, 3, 22072216. (g) Gallo, E. A.; Gellman, S. H. J. Am. Chem. Soc. 1993, 115, 9774-9788.
(3) (a) Hanessian, S.; McNaughton-Smith, G.; Lombart, H.-G.; Lubell, W. D. Tetrahedron 1997, 53, 12789-12854. (b) Halab, L.; Gosselin, F.; Lubell, W. D. Biopolymers 2000, 55, 101-122. (c) Cluzeau, J.; Lubell, W. D. Biopolymers 2005, 80, 98-150.
(4) Eliel, E. L.; Wilen, S. H.; Mander, L. N. In Stereoisomers in Stereochemistry of Organic Compounds; John Wiley and Sons: New York, 1994; pp 49-70.
(5) Christie, G. H.; Kenner, J. J. Chem. Soc., Trans. 1922, 121, 614620.
(6) Eliel, E. L.; Wilen, S. H.; Mander, L. N. In 14-5. Biphenyls. Atropisomerism in Stereochemistry of Organic Compounds; John Wiley and Sons: New York, 1994; pp 1142-1155.
(7) Ōki, M. Recent Advances in Atropisomerism. In Topics in Stereochemistry; Allinger, N. L., Eliel, N. L., Wilen, S. H., Eds.; John Wiley and Sons: New York, 1983; Vol. 14, pp 1-81.
(8) (a) Rosini, C.; Franzini, L.; Raffaelli, A.; Salvadori, P. Synthesis 1992, 1992, 503-517. (b) McCarthy, M.; Guiry, P. J. Tetrahedron 2001, 57, 3809-3844. (c) Bringmann, G.; Price Mortimer, A.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem., Int. Ed. 2005, 44, 5384-5427.
(9) Bringmann, G.; Günther, C.; Ochse, M.; Schupp, O.; Tasler, S. In Biaryls in Nature in Progress in the Chemistry of Organic Natural Products; Herz, W., Falk, H., Kirby, G. W., Moore, R. E., Eds.; Springer: Vienna, 2001; Vol. 82, pp 1-249.
(10) Alkorta, I.; Elguero, J.; Roussel, C.; Vanthuyne, N.; Piras, P. Adv. Heterocycl. Chem. 2012, 105, 1-188.
(11) Janjić, M.; Prebil, R.; Grošelj, U.; Kralj, D.; Malavašič, Č.; Golobič, A.; Stare, K.; Dahmann, G.; Stanovnik, B.; Svete, J. Helv. Chim. Acta 2011, 94, 1703-1717.
(12) Peng, Y.; Zhang, Q.; Snyder, G. L.; Zhu, H.; Yao, W.; Tomesch, J.; Papke, R. L.; O’Callaghan, J. P.; Welsh, W. J.; Wennogle, L. P. Bioorg. Med. Chem. Lett. 2010, 20, 4825-4830.
(13) Udagawa, S.; Yamamoto, M.; Aoki, T.; Oosumi, K.; Hayashi, K. WO 2014069554.
(14) Peng, Y.; Wennogle, L. P.; Zhang, Q.; Tomesch, J. WO 2012178057.
(15) Li, P.; Peng, Y.i; Tomesch, J.; Wennogle, L. P.; Zhang, Q. WO 2012178112.
(16) Peng, Y.; Wennogle, L.; Zhang, Q.; Tomesch, J. WO 2012177263.
(17) Menozzi, G.; Fossa, P.; Cichero, E.; Spallarossa, A.; Ranise, A.; Mosti, L. Eur. J. Med. Chem. 2008, 43, 2627-2638.
(18) Bailey, N.; Bamford, M. J.; Dean, D. K.; Pickering, P. L.; Wilson, D. M.; Witherington, J. WO 2005058837.
(19) Pendri, A.; Gerritz, S.; Dodd, D. S.; Sun, C. US 20050080087.
(20) Hamanaka, E. S.; Guzman-Perez, A.; Ruggeri, R. B.; Wester, R. T.; Mularski, C. J. WO 9943663.
(21) Pepin, R.; Schmitz, C.; Lacroix, G. B.; Dellis, P.; Veyrat, C. EP 360701.
(22) Šenica, L.; Grošelj, U.; Kasunič, M.; Kočar, D.; Stanovnik, B.; Svete, J. Eur. J. Org. Chem. 2014, 2014, 3067-3071.
(23) For details, see Supporting Information.
(24) Sandström, J. In Dynamic NMR Spectroscopy; Academic Press: London, 1982; pp 93-123, 151-176.
(25) Hesse, M.; Meier, H.; Zeeh, B. In Spektroskopische Methoden in der Organische Chemie; Georg Thieme Verlag: Stuttgart, 1995; pp 98100.
(26) Kemp, W. In NMR in Chemistry: A Multinuclear Introduction; Macmillan Education Ltd.: London, U.K., 1986; pp 158-168.
(27) Friebolin, H. In Basic One- and Two-Dimensional NMR Spectroscopy; Wiley-VCH: Weinheim, 2005; pp 309-314, and references cited therein.
(28) Gasparro, F. P.; Kolodny, N. H. J. Chem. Educ. 1977, 54, 258261.
(29) Levine, R. D. In Molecular Reaction Dynamics; Cambridge University Press: Cambridge, 2005; pp 1-568.
(30) (a) Frank, J. H.; Powder-Georger, Y. L.; Ramsewak, R. S.; Reynolds, W. F. Molecules 2012, 17, 7914-7926. (b) Zimmer, K. D.; Shoemaker, R.; Ruminski, R. R. Inorg. Chim. Acta 2006, 359, 14781484.
(31) Shanan-Atidi, H.; Bar-Eli, K. H. J. Phys. Chem. 1970, 74, 961963.
(32) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2013.
(33) (a) Yamada, S. In Sterically Hindered Twisted Amides in The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science; Greenberg, A., Breneman, C. M., Liebman, J. F., Eds.; John Wiley and Sons: New York, 2000; pp 215-246. (b) Kirby, A. J.; Komarov, I. V.; Wothers, P. D.; Feeder, N. Angew. Chem., Int. Ed. 1998, 37, 785-786.
(34) For examples, see: (a) Skorupska, E. A.; Nazarski, R. B.; Ciechanska, M.; Jozwiak, A.; Klys, A. Tetrahedron 2013, 69, 81478154. (b) Olsen, R. A.; Liu, L.; Ghaderi, N.; Johns, A.; Hatcher, M. E.; Mueller, L. J. J. Am. Chem. Soc. 2003, 125, 10125-10132.
(35) Chandrakantha, B.; Isloor, A. M.; Sridharan, K.; Philip, R.; Shetty, P.; Padaki, M. Arabian J. Chem. 2013, 6, 97-102.
(36) Kasımoğulları, R.; Arslan, B. S. J. Heterocycl. Chem. 2010, 47, 1040-1048.

[^0]: Received: October 26, 2015
 Published: December 9, 2015

[^1]: ${ }^{a}$ Reaction conditions: (i) CDI, MeCN, r.t.; (ii) add $\mathrm{MeNH}_{2} \cdot \mathrm{HCl}$, NMM , r.t.; (iii) add $2 \mathrm{M} \mathrm{Me}_{2} \mathrm{NH}$ in MeOH , r.t.; (iv) add (S)-1-phenylethanol, r.t.; (v) DMFDMA, toluene, reflux; (vi) $\mathrm{RNHNH}_{2} \cdot \mathrm{HCl}(\mathbf{1 0 a}, \mathrm{e})$ or $2-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{5} \mathrm{NHNH}_{2} \cdot \mathrm{HCl}(10 \mathrm{~m}), n-\mathrm{PrOH}$, reflux; (vii) $2 \mathrm{M} \mathrm{NaOH}, \mathrm{MeOH}, 35^{\circ} \mathrm{C}$; (viii) add (S)-AlaOMe $\cdot \mathrm{HCl}$ (11a), NMM.

